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BEV battery electric vehicle
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1. Introduction

In 1975, Congress passed the Energy Policy and Conservation Act (EPCA), requiring standards for
Corporate Average Fuel Economy (CAFE), and charging the U.S. Department of Transportation’s (DOT)
with the establishment and enforcement of these standards. The Secretary of Transportation has
delegated these responsibilities to the National Highway Traffic Safety Administration (DOT/NHTSA).
Following an extended period of stable CAFE standards, NHTSA increased standards in 2003 for light trucks
produced during 2005-2007 and developed new attribute-based standards in 2006 for light trucks
produced during 2008-2011. In 2007, Congress passed the Energy Independence & Security Act (EISA),
which updated EPCA by requiring, among other things, maximum feasible attribute-based CAFE standards
that achieve at least 35 mpg by 2020. Rulemakings completed in 2009 and 2012 established new fuel
economy standards for light vehicles produced during 2012-2016 and 2017-2021, respectively.

The Volpe Center provides analytical support for NHTSA’s regulatory and analytical activities related to
fuel economy standards, which, unlike long-standing safety and criteria pollutant emissions standards,
apply to manufacturers’ overall fleets rather than to individual vehicle models. In developing the
standards, DOT/NHTSA made use of the CAFE Compliance and Effects Modeling System (the "Volpe
model" or the “CAFE model”), which was developed by DOT’s Volpe National Transportation Systems
Center for the 2005-2007 CAFE rulemaking and continuously updated since. The model is the primary tool
used by the agency to evaluate potential CAFE stringency levels by applying technologies incrementally to
each manufacturer’s fleet until the requirements under consideration are met. The Volpe model relies on
numerous technology-related and economic inputs such as a market forecasts, technology cost, and
effectiveness estimates; these inputs are categorized by vehicle classification, technology synergies,
phase-in rates, cost learning curve adjustments, and technology “decision trees”. The Volpe Center assists
NHTSA in the development of the engineering and economic inputs to the Volpe model by analyzing the
application of potential technologies to the current automotive industry vehicle fleet to determine the

feasibility of future CAFE standards and the associated costs and benefits of the standards.

Part of the model’s function is to estimate CAFE improvements that a given manufacturer could achieve
by applying additional technology to specific vehicles in its product line. To inform decisions regarding
the design of specific vehicles, manufacturers may apply techniques such as vehicle and component
testing, combustion simulation, powertrain simulation, computational fluid dynamics simulation (CFD),

and full vehicle simulation. Because CAFE standards apply to the average fuel economy across
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manufacturers’ entire fleets of new passenger cars and light trucks, the model, when simulating
manufacturers’ potential application of technology, considers the entire range of each manufacturer’s
product line. This typically involves accounting for more than 1,000 distinct vehicle models and variants,
many more than can be practically examined using full vehicle simulation (or the other techniques
mentioned above). Instead, the model uses estimates of the effectiveness of specific technologies for a
representative vehicle in each vehicle class, and arranges technologies in decision trees defining logical
progressions from lower to higher levels of cost, complexity, development requirements, and/or

implementation challenges.

DOT/NHTSA has made use of vehicle simulation results to update technology effectiveness estimates used
by the model. In recent rulemakings, the decision trees have been expanded so that DOT/NHTSA is better
able to track the incremental and net/cumulative cost and effectiveness associated with each technology,
which substantially improves the “accounting” of costs and effectiveness for CAFE rulemakings. A detailed
description of the Volpe model can be found in NHTSA’s Final Regulatory Impact Analysis (FRIA) supporting
the 2012 rule establishing CAFE standards applicable beginning MY 2017. The FRIA and all other
rulemaking documents, the model, source code, model documentation, and all model inputs and outputs

are available at http://www.nhtsa.gov/fuel-economy.

A significant number of inputs to Volpe’s decision tree model are related to the effectiveness (fuel
consumption reduction) for each fuel-saving technology. Because the model is intended for fleet-level
analysis, precision in vehicle-level results is less important than in, for example, the vehicle design process.
However, even in this fleet-level context, minimization of systematic bias is important. Because some
combinations of technology are likely to yield overall fuel savings different from levels that would be
applied by simply multiplying factors applicable to individual technologies, the model uses “synergy
factors” to make corresponding adjustments. Although vehicle testing could be used to estimate these
factors, vehicle testing spanning many vehicle types and technology combinations could be prohibitively
resource-intensive. Another alternative, either as a substitute for or a complement to vehicle testing,
would be to make greater use of vehicle simulation. Full vehicle simulation tools use physics-based
mathematical equations, engineering characteristics (e.g., including engine maps, transmission shift
points, hybrid vehicle control strategy), and explicit drive cycles to predict the effectiveness of individual

fuel-saving technologies and the effectiveness of combinations of fuel-saving technologies.
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Argonne National Laboratory, a DOE national laboratory, has developed a full-vehicle simulation tool
named Autonomie. Autonomie has become one of the industry’s standard tools for analyzing vehicle

energy consumption and technology effectiveness.

The objective of this project is to develop and demonstrate a process that, at a minimum, provides more
robust information that can be used to calibrate inputs applicable under the Volpe model’s existing
structure. The project will be more fully successful if a process can be developed that minimizes the need
for decision trees and replaces the synergy factors by inputs provided directly from a vehicle simulation
tool. The report provides a description of the process that was developed by Argonne National Laboratory

and implemented in Autonomie.
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2. Problem Statement

The Volpe model currently relies on multiple decision trees to represent component technology options,

including:

e Powertrain Electrification
e Engine

e Transmission

e Light-weighting

e Aerodynamics

e Rolling resistance

Figure 1 shows an example of the vehicle electrification decision tree. During the simulation, the Volpe
model walks through each decision tree to find the technology that should be selected next to provide

the best fuel energy improvement at the lowest cost.
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Figure 1 — Hybrid Technology Decision Tree

Figure 2 shows the final decision trees selected equivalent to the number of technology combinations

adapted best to represent current and future potential technologies.
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Engine Electrification Transmission Light Weighting Aerodynamics Rolling Resistance
|| Eng0l | Conventional | | 5-speed | | Reductionof | | | Reductionof | | | Reduction of
g Automatic 0% 0% 0%
. 6-speed Reduction of Reduction of Reduction of
Eng02 Micro HEV Automatic 5% 10% 10%
8-speed Reduction of Reduction of Reduction of
Eng03 BISG Automatic 7.5% 20% 20%
Reduction of
— Eng04 — CISG — 6-speed DCT — 10%
Full HEV Reduction of
| Engsb Power Split — 8-speed DCT ] 15%
Pre- .
— Engba — Transmission — >-speed Reduction of
HEV Manual 20%
6-speed
Eng7a Fuel Cell HEV Manual
Plug-in Hybrid
L Engsa . 20AER Power | |- /speed
. Manual
Split
Plug-in Hybrid
— Engl2 — 30AER EVER — CVT
Voltec
Plug-in Hybrid
— Engl3 | S0AER EVER
Voltec
Battery
— Engld — Electric
Vehicle 200
— Engl5
— Engl6
— Engl7

Figure 2 - All Technological Decision Trees in the Volpe Model

In addition to the numerous decision trees, the Volpe model currently relies on estimates of synergies
between technologies, recognizing that multiple technologies can address the same inefficiencies of the
component. For example, if an engine technology provides 5% fuel consumption improvement and an
advanced transmission 4%, the combination of both technologies may not provide 9% improvement —the

actual improvement could be lower (negative synergy) or higher (positive synergy). Developing the
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relationships between multiple component technologies is challenging, but quantifying it is even more
difficult, especially when more than one technology is involved. As the number of technologies increases,
the number of technology combinations increases exponentially. Thus, a large number of simulations may

be required in order to calculate the complete set of synergy factors for a modest number of technologies.
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3. Process Overview

The main objective is to reduce the need for decision trees and replace the synergy factors by individual

vehicle simulations as shown in Figure 3.
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Figure 3 — Model Input: Replacing Decision Trees and Synergies with Individual Simulations

To do so, individual vehicles have to be simulated to represent every combination of vehicle, powertrain,

and component technologies. The current decision trees include:

5 vehicles Classes (Compact, Midsize, Small SUV, Midsize SUV, Pickup)

- 14 engine technologies

- 11 electrification levels (Conventional equivalent to no electrification level)

- 9transmissions technologies (applied to Low Electrification Level Vehicles only)
- 6 Light Weighting levels

- 3 Rolling Resistance levels

- 3 Aerodynamics levels
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For one vehicle class:

4 Low Electrification Level Vehicles x 14 Engines Levels x 9 Transmissions Levels x 6 Light-
Weighting Levels x 3 Rolling Resistance Levels x 3 Aerodynamics Levels = 27,216 vehicles

+

7 hybridized vehicles x 6 light weighting x 3 rolling resistance x 3 aerodynamics = 378 vehicles

~27,600 vehicles for each vehicle class

The combination of the technologies from each decision tree leads to ~27,600 simulations for a single
vehicle class (or ~140,000 for 5) in order to fully populate inputs to the Volpe model. It is explained later
that each vehicle combination need to go through sizing algorithm routines + procedure runs => over a

million simulations are required.

The process developed includes the following steps as shown in Figure 4:

Collect/develop all the technology assumptions.

Develop a process to automatically create the vehicle models.

Size the individual vehicles to all meet the same vehicle technical specifications.
Run each vehicle model on the specified driving cycles.

Create a database with all the required input for the Volpe model.

AN A T o

Create post-processing tool to validate the database content.

Since this process has to be performed in an acceptable amount of time, several additional processes were

developed and implemented:

- Use of distributed computing for vehicle sizing and simulation

- Use of statistical analysis to minimize the number of simulations that need to be performed
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Figure 4 — Overview of Large-Scale Simulation Process (LSSP) Overview

The following sections of the report will describe each step in detail.
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4. Autonomie

4.1.

Overview

Autonomie is a MATLAB®-based software environment and framework for automotive control-system

design, simulation, and analysis. The tool, sponsored by the U.S Department of Energy Vehicle

Technologies Program, is designed for rapid and easy integration of models with varying levels of detail

(low to high fidelity), abstraction (from subsystems to systems to entire architectures), and processes

(e.g., calibration, validation). Developed by Argonne in collaboration with General Motors, Autonomie

was designed to serve as a single tool that can be used to meet the requirements of automotive engineers

throughout the development process — from modeling to control. Autonomie was built to accomplish

the following:

Support proper methods, from model-in-the-loop, software-in-the-loop (SIL), and hardware-in-
the-loop (HIL) to rapid-control prototyping (RCP);

Integrate math-based engineering activities through all stages of development — from feasibility
studies to production release;

Promote re-use and exchange of models industry-wide through its modeling architecture and
framework;

Support users’ customization of the entire software package, including system architecture,
processes, and post-processing;

Mix and match models with different levels of abstraction to facilitate execution efficiency with
higher-fidelity models, for which analysis and high-detail understanding are critical;

Link with commercial off-the-shelf software applications, including GT-Power®, AMESIim®, and
CarSim®, for detailed, physically based models;

Provide configuration and database management; and

Protect proprietary models and processes.

By building models automatically, Autonomie allows the simulation of a very large number of component

technologies and powertrain configurations. Autonomie offers the following capabilities:

Simulate subsystems, systems, or entire vehicles;

Predict and analyze fuel efficiency and performance;
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e Perform analyses and tests for virtual calibration, verification, and validation of hardware models
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and algorithms;
e Support system hardware and software requirements;
e Link to optimization algorithms; and
e Supply libraries of models for propulsion architectures of conventional powertrains, as well as

electric-drive vehicles.

Autonomie is used in this study to assess the fuel consumption of advanced powertrain technologies.
Autonomie has been validated for several powertrain configurations and vehicle classes using vehicle test

data from Argonne’s Advanced Powertrain Research Facility (APRF).

With more than 400 different pre-defined powertrain configurations, Autonomie is an ideal tool to
analyze the advantages and drawbacks of the different options within each vehicle category, including

conventional, parallel, series, and power-split hybrid vehicles.

Autonomie allows users to evaluate the impact of component sizing on fuel consumption for different
powertrain technologies, as well as to define the component requirements (e.g., power, energy) to
maximize fuel displacement for a specific application. This is important for the current study because the
use of validated plant models, vehicle controls, and complete vehicle models is critical to properly
evaluating the benefit of any specific technology. The vehicle-level control algorithms (e.g., engine
ON/OFF logic, component operating conditions algorithm) are critical to properly evaluating any
powertrain configuration or component-sizing impact, especially for electric drives. Argonne has extensive
experience in developing shifting algorithms for conventional vehicles based on the different component

characteristics (e.g., engine fuel rate, gear ratios).

The ability to simulate a large number of powertrain configurations, component technologies, and vehicle-
level controls over numerous drive cycles has been used to support a large number of studies, focusing

on fuel efficiency, cost-benefit analysis, or greenhouse gases.

More than 150 companies and research entities, including major automotive companies and suppliers,

are also using Autonomie to support advanced vehicle development programs.



DRAFT

14

4.2. Structure

Autonomie was designed for full plug-and-play support. Models in the standard format create building
blocks, which are assembled at run time into a simulation model of a vehicle, system, or subsystem. All
parts of the user interface are designed to be flexible to support architectures, systems, subsystems, and
processes not yet envisioned. The software can be molded to individual uses, so it can grow as
requirements increase and technical knowledge expands. This flexibility also allows for implementation

of legacy models, including plant and controls.

Autonomie is based on standardized modeling architecture, on-demand model building, associated
extendible markup language (XML) definition files, and user interfaces for managing models, including a

file-versioning database (Figure 5).

User Interface

File Management

Standard Model
Cle - )

ot - Ivo1_svoten =)

e oo EEy l TE————
-l

Figure 5 — Simulation Management Concepts

All systems in the vehicle architecture can be logically categorized as either a “containing system” or a
“terminating system” (Figure 6). Containing systems consist of one or more subsystems, as well as
optional files to define that system. They do not contain models; they only describe the structure of the
interconnections among systems and subsystems. Terminating systems consist of a model that defines
the behavior of the system and any files needed to provide inputs or calculate outputs. Terminating

system models contain the equations that describe the mathematical functions of a system or subsystem.

Both types of systems are arranged in a hierarchical fashion to define the vehicle to be simulated. To avoid

confusion, it is a best practice to mimic the structure of the hardware as much as possible. For example,
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low-level component controllers should be grouped with the components that they control, at different
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levels of the hierarchy (where applicable). Only systems that actually appear in the vehicle should be
represented; in other words, there is no need for unused components or empty controllers. In addition
to simplifying the architecture, this philosophy will allow for easy transfer of systems among users and

will fully support HIL, SIL, and RCP.

= =
Gearbox Battery Engine

=y ( EE L E“:*n ﬁ...:..
_— T Ml

Figure 6 — Class Diagram of Container and Terminating Systems

At the top level is a vehicle system containing the following systems: environment; driver; vehicle
propulsion controller for advanced powertrain vehicles such as hybrid electric vehicles (HEVs) or plug-in
hybrid electric vehicles (PHEVs), which require a vehicle level controller; and vehicle propulsion
architecture (VPA) (Figure 7). The VPA system will contain the powertrain components that are required

to simulate the vehicle, such as engine, battery, and wheels.
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Figure 7 — Top-Level Vehicle Layout

The model files created for the terminating systems need to be combined in a way that allows simulation
in Simulink. One option is to create every possible combination of the systems and save each complete
vehicle as a separate model file. Because of the staggering number of possible combinations, this option
is not feasible. Combinations involve not only many different components, but also different levels of
fidelity and model versions for each component. Changing the version of a single component model would

result in a new version of the entire vehicle. This method is clearly storage intensive and impractical.

A second option is to save every model in its own file and manage a library of the models. This would be
an improvement over the first option; however, it still presents some difficulties. When users wish to
create a new vehicle, they must select all of the appropriate models from the library and connect them
by hand into a vehicle context. Not only is this manual process time consuming, but it introduces many
opportunities for error. Consider an engine control unit model for auto code generation that can have
more than 2,000 inputs and outputs (I/Os). Manually connecting all I/Os almost guarantees errors. It also
requires some outside solution for model library management (e.g., searching, versioning, and ensuring

compatibility).
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Autonomie uses a novel approach that combines the second option with an automated building process,
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giving the user the flexibility of saving and versioning models independently without the potential pitfalls
of manual connections. Users select the correct files in a user interface, and the automatic building uses

metadata associated with the models to create the correct connections, as shown in Figure 8.

il
LURTIN
s |

Figure 8 — Models are Automatically Built
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Manufacturers have been considering many technology options for improving vehicle energy efficiency.

The objective of this phase is to define and collect, if necessary, the performance assumptions for each

technology that were in the original VOLPE decision trees.

5.1. Engine

Figure 9 shows the original engine decision trees provided by the Volpe Center.
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Figure 9 - Original VOLPE Model Engine Decision Tree

A consulting contract has been completed for obtaining a wide range of different engine maps with

technological breakdown, as shown in Figure 10. The contractor has provided wide-open-throttle engine

performance values and brake-specific fuel consumption (BSFC) maps for future engine concepts. In order
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to provide sufficient and realistic results, the list of incremental technologies have been modeled using
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GTPower, and validated with existing dynamometer measurements. The models are trained over the
entire engine operating range and will have predictive combustion capability. This is essential, since the
BSFC prediction needs to be accurate while the engine setup is subject to change. These maps will be used

in the process described herein.
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Downsize Level2 -> 1.2l, 4cyl, 24bar bmep
Downsize Level2 - 1.21, 4cyl, 24bar bmep, cooled EGR
Downsize Level3 - 1.01, 4cyl, 27bar bmep, cooled EGR
Downsize Level3 - 1.0l, 3cyl, 27bar bmep, cooled EGR

*baseline - Gasoline, 2.01, 4 cyl,

NA, PFIl, DOHC, dual cam VWT
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adds a technology on top of the

Diesel
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VWVT, WL

Eng1 - gasoline, 2.01, 4 cyl, NA, PFIl, DOHC, dual cam VVT
«  Calibrations fully optimized for best bsfc and maximum torque (comb.
phasing, valve timing, lambda, etc)
Eng2* - VVL system was added to the intake valves on Eng1
«  Valve lift and timing optimized
» Benefit (1) Reduced pumping work at low loads (2) More torque at
low speeds from reduced intake duration
Eng3* - Eng2 (PFI) converted to direct injection
+  Comp ratio raised from 10.2 to 11.0 and injection timing optimized
» Benefit - DI provides greater knock tolerance, allowing higher comp
ratio and increased efficiency over entire map
Eng4* - Cylinder deactivation added to engine Eng3
*  Engine fires only 2 cylinders at low loads and at speeds below 3000
RPM by deactivating valves on 2 cylinders
+  Benefit - Effective load doubled on 2 cylinders providing less pumping
work and higher efficiency
Eng5b/ Eng6a/ Eng7a/ Eng8a* - Reduced friction from Eng5a/ Eng2/ Eng3/ Eng4 respectively
+ Engine FMEP reduced by 0.1 bar over entire operation range to understand friction benefit from SOHC
+ Benefit (1) Reduced friction improves efficiency at all load points (2) Raises full load line
Eng12 - gasoline, 1.6, 4 cyl, turbocharged, DI, DOHC, dual cam VVT, intake VVL
«  Calibrations fully optimized for best bsfc (comb. phasing, valve timing, lambda, etc)
Eng13* - Eng12 downsized to 1.2|
«  Turbocharger maps scaled to improve torque at low engine speeds
Eng14* - High pressure cooled EGR added to Eng13
* Cooled EGR target set points optimized
Eng15* - Eng14 downsized to 1.0l

+ Cooled EGR target set points re-optimized and turbocharger maps re-scaled

Benefits summarized

on the following page

Eng16* - Eng15 converted to 3cyl, 1.0l concept
« Intake and exhaust piping scaled to account for larger mass flows through each cylinder and cooled

EGR target set points re-optimized

*All inputs/parameters are held constant unless specifically mentioned

Figure 10 — Future Engine Technologies Considered
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As noted previously, 14 different bsfc engine maps were developed and selected to be used in the current
study to evaluate the fuel consumption benefits of advanced engines. The baseline engine technology is
the PFI 2.0-L gasoline engine with VVT. The baseline bsfc engine map (Engine 1) was generated from
engine dynamometer data. Each subsequent engine (bsfc map) represents an incremental increase in
technology advance over the previous technology. For example, Engine 2 is a 2.0-L engine with Variable
Valve Lift (VVL) in addition to VVT for a PFl engine. Engine 3 is a direct injection (DI) engine with VVT and

VVL, and so on. Figure 10 lists the four NA technologies considered.

Friction reduction has been shown to offer significant improvements in vehicle fuel consumption.
Therefore, in order to evaluate the potential of friction reduction, each of the above engine technologies

was subjected to two levels of reduction in friction mean effective pressure (FMEP).

1. Avreductionin FMEP by 0.1 bar across the entire engine speed range.

2. An extreme friction reduction (25% FMEP) across the entire speed range.
For the current study and for VOLPE's interest only the first level of friction reduction has been considered.

In addition to the naturally aspirated engines, maps for turbo technologies were also developed using GT-
Power. With turbo engines, there is a ‘lag’ in torque delivery due to the operation of the turbo charger.
This impacts vehicle performance, and could impact the vehicle shifting on aggressive cycles. Turbo lag
has been modelled for the turbo systems based on principles of a first order delay, where the turbo lag

kicks in after the naturally aspirated torque limit of the turbo engines has been reached.

Figure 11 below shows the response of the turbo engine model for a step command.
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Figure 11 - Turbo charged engine response for the one liter engine
It should be noted that the turbo response changes with engine speed, i.e. at higher speeds, the turbo

response is faster due to higher exhaust flow rates.

It should be noted that the baseline engine maps (Engine 1 and Engine 12) for the naturally aspirated and
the turbo engines were generated using test data. The baseline GT Power models were hence validated

against test data.

Assumptions for cylinder deactivation

Due to NVH considerations, cylinder deactivation operation is not performed in several vehicle operation
modes, like vehicle warm-up, low gears, idle, and low engine speed in production vehicles. In order to
provide a realistic evaluation of the benefits of cylinder deactivation technology, cylinder deactivation has

not been used under the following vehicle and engine conditions:

1. Cylinder deactivation is disabled if the engine is at idle or any speed below 1000 RPM and above
3000 RPM.

2. Cylinder deactivation is disabled if the vehicle is in the 1st of the 2nd gear.

3. Cylinder deactivation is disabled if the engine load is above half the max bmep of the engine (and

a certain hysteresis is maintained to prevent constant activation and deactivation).

Typically, cylinder deactivation is not performed during the vehicle warm up phase, i.e. for a cold start.
Since all the simulations considered in this study assume a ‘hot start’, where in the engine coolant
temperature is steady around 95 degrees C, the cold start condition was not a factor for the simulations.
In addition, changes in the transmission shifting calibration (like lugging speed limits) and additional

torque converter slippage during cylinder deactivation have also been disregarded.
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5.2. Transmission

To provide more fuel-efficient vehicles to customers, manufacturers have introduced a number of
transmission improvements over the past couple of years, including incorporating a higher number of
gears and new technologies such as the dual-clutch transmission. Argonne and Volpe selected the

following configurations for use in the VOLPE model, to best represent market need:

- 5-speed automatic (reference vehicle)

- 6-speed automatic

- 8-speed automatic

- 6-speed dual-clutch

- 8-speed dual-clutch

- Continuously variable

- 5-speed manual

- 6-speed manual

- 7-speed manual
Progressive transmission gear ratios have been designed for each transmission type considering trends in
gear span and ratios, as well as expected differences in vehicle performance and fuel consumption based
on the transmission technology. In order to properly evaluate engine operation for different component
technologies and powertrain configurations, a rigorous selection of transmission gear ratios, final drive
ratios, and gear shift parameters is important. On the basis of a literature review and evaluation of chassis

dynamometer test data for conventional vehicles, the following criteria were selected for the design of

transmission gear ratios, final drive ratios, and shift parameters.

1. The vehicle should shift to top gear around 45 mph.

2. Intop gear, the engine should operate at or above 1,250 rpm to prevent engine lugging.

3. The number of gear shifts for a 6-speed transmission, Urban Dynamometer Driving Schedule
(UDDS) cycle, should be around 110 to 120 based on a review of chassis dynamometer test data.

4. Gear span and final drive ratios should be based on industry trends for the compact vehicle class.

5. Engine operation will be restricted in the low-speed/high torque region to prevent noise,
vibration, and harshness (NVH) issues and ensure drive quality.

6. The span of the 8-speed transmissions is higher than that of the 6-speed transmission.

7. The span of the 8-speed DCT is slightly higher than the span of the 8-speed AU to compensate for

the lack of torque multiplication of the torque converter for the AU.
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8. The vehicle should be able to meet or exceed Vehicle Technical Specifications (VTSs) related to

24

grade (in first and top gear) and passing performance for a compact car.

Figure 12 shows the expected fuel economy and performance differences between the 6- and 8-speed AU
and 8-speed DCT based on the literature survey.

6 Speed Auto | 8 $peed Auto | 8 Speed DCT
+ ++ +

Performance

Fuel Economy + ++ +H+

Figure 12 - Expected Differences in Performance and Fuel Economy for the Different Engines.

The 8-speed automatic is expected to have a better performance (IVM -60 mph) when compared to a 6—
speed AU given that the “ideal” tractive effort parabola is better matched by an 8-speed than a 6-speed.
Naturally, the higher number of shifts in an IVM-60 test for an 8-speed could reduce the performance
difference. An 8-speed DCT with the same gear ratios and final drive as an 8-speed AU is expected to have

slower performance because of the absence of the initial torque multiplication of the torque converter.

The 8-speed AU is expected to provide better fuel efficiency than a 6-speed because of its higher gear
span, and therefore, a lower engine speed range of operation. The 8-speed DCT provides the highest fuel

economy because of the absence of torque converter losses when it is in the unlocked state.

Dual clutch transmissions with torque converters are being introduced in the market. But, based on the
2014 EPA Report on light —duty vehicles, a significant majority of the DCT transmissions in the market
today are without the use of a torque converter device. Therefore, in this study, it is assumed that the

torque converter is not used with the DCT.

Based on publicly available data, the gear spans, transmission gear ratios, and final drive ratios for several
vehicles in the compact car segment for MY 2013 were reviewed. Table 1 lists the minimum and maximum
values for gear ratio span, final drive ratio, and engine speed in top gear at 45 mph (indicator of top gear
ratio). The table also lists the selected values for the 6-speed transmission. A similar selection was made

for the 8-speed case, as well.
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Table 1 - Gear Ratio, Final Drive Information for Sample 6-Speed Automatic Transmission Vehicles -
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MY 2013.
Minimum Value Maximum Value Selected Value for
Study
Span 5.6 6.15 6.00
Final Drive 3.2 4.58 3.74
Engine Speed (45 mph) 1,234 RPM 1,604 RPM 1,420 RPM

A gear span of 6 has been selected for the 6-speed case, because current trends in transmission
technology reflect increasing gear spans, thus driving selection of a span closer to the maximum observed

value.

Similarly, span and final drive ratios for the 8-speed AU transmission were chosen, considering available
transmissions in the market today as well as the criteria listed above. It should be noted that there are
very few compact cars currently in the market with 8-speed transmissions, and most of the available data
suggest the use of 8-speed transmissions in the large sedan (and higher) segments, luxury cars, and sports
cars. Therefore, the decision on gear span and final drive ratio was made so as to meet the criteria listed

above.

Table 2 lists the span, final drive ratio, and engine speed at 45 mph for the 6-speed AU, 8-speed AU, and
8-speed DCT transmissions. With a start-stop (BISG) powertrain configuration, the electric motor provides
additional torque during vehicle launch, thus aiding in vehicle acceleration and performance. Therefore,
it is possible to have a final drive ratio lower than one for a conventional powertrain with the same
transmission. A very small final drive ratio would result in increased transmission gear ratios to attain the
same performance and grade ability requirements, and therefore, an inherent trade-off exists between
higher transmission gear ratio and final drive ratio. Finding an optimum trade-off between transmission
gear ratio and final drive ratio for the BISG is beyond the scope of this study.

Table 2 - Gear Span, Final Drive and Engine Speed in Top Gear at 45 mph for 6-Speed AU, 8-Speed
AU, and 8-Speed DCT.

6-speed AU 8-speed AU 8-speed DCT
Span 6 7.5 7.7
Final Drive 3.7 3.5 3.5
Engine Speed (45 mph) 1,420 RPM 1,290 RPM 1,290 RPM

With the gear span, final drive ratio, and expected engine speed at 45 mph in top gear all preselected, the

progressive gear ratios were calculated for each transmission type using the following formula from:
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Where:
z =total number of gears,

n =gear number in consideration for design (varies from 1 to z),

?2 = progression factor (independent variable — normally between 1 and 1.2),
' = top gear ratio, and

'n = nth gear ratio.

The independent variable ?2 can normally take a value between 1 and 1.2 based on industry trends. The

selection of ?:causes a trade-off between fuel consumption and performance. For this study, the
independent variable, for each transmission, was chosen so as to minimize the fuel consumption over a
combined UDDS (Urban) and HWFET (Highway) drive cycle. Figure 13 shows the fuel economy and

performance (IVM-60 mph) for different values of the independent variable for a UDDS cycle.
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Figure 13 - Fuel Economy and Performance Variations with Choice of Progression Factor for a 6-
Speed Transmission.

As shown, a value of 1.07 provides the maximum fuel economy and was therefore chosen to decide the

gear ratios of the 6-speed transmission for the study. Figure 14 shows the gear ratios obtained with three

different values of 2 .
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Figure 14 - Gear Ratios Obtained with Three Values of Progression Factor for a 6-Speed
Transmission.

A similar exercise was conducted for the 8-speed transmissions, as well.

The transmission ratios thus designed may not meet the necessary criteria for practical transmission ratio
design, where decisions on number of planetary gear sets, clutches, and kinematic combinations of
different transmission elements have to be considered. It is assumed that with actual transmissions, the
ratios would be slightly different and would have a minimal implication on vehicle fuel consumption. To
validate the approach described above for selection of the intermediate gear ratios, the intermediate gear
ratios calculated by the algorithm were compared to actual vehicles for two vehicles in the compact class.

Gear span, final drive ratio, and top gear ratio were inputs to the equation above. As Figure 15 and Figure

16 show, with proper selection of the independent variable ?2, the calculated gear ratios are very close

to the actual gear ratios.
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Figure 15 - Comparison of Actual Gear Ratios and Gear Ratios Calculated
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Figure 16 - Comparison of Actual Gear Ratios and Gear Ratios Calculated

A similar validation was performed with the Ford Focus and the Chevy Cruze. Table 3 shows the value of
22, which was calculated to minimize the LSE (Least Square Error) between calculated and actual gear

ratios for the vehicles, in comparison to the value of ¢: chosen for the study.

Table 3 - Progression Ratio for Numerous Vehicles with 6-speed AU.

Ford Focus Chevy Cruze Mazda 3 Volkswagen Study
Golf
?, 1.09 1.04 1.08 1.08 1.07

In order to meet the criteria listed above, proper selection of shift parameters is equally important to the

selection of gear ratios. Figure 17 shows the shape of the upshift and downshift curves for a 6-speed
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transmission. Of particular importance are shift parameters, which determine the upshift to top gear

29

around 45 mph and downshift from top gear to prevent lugging.
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Figure 17 - Shifting Speed Curves for a 6-Speed Transmission Vehicle in Autonomie.

More shifting control details are described later on in this report.

Torque Converter Lock-up Assumptions

A quasi-static model is used to represent the torque converter. The torque converter is used as a start-up
device in the first gear, with very low slip (torque ratio of 0.95) at higher speeds, in the first gear. Recent
trends in torque converter technology suggest operation in locked or controlled slip mode, in the 2nd and
higher gears. In general, the torque converter is in controlled slip or mechanically locked based on vehicle
speed and pedal position, for each gear apart from the 1st. In order to suggest advances in torque
converter technology, it was assumed that the torque converter would be in a mechanically locked state

for the 2nd and higher gears.

5.3. Light-weighting

Light-weighting will be associated with the glider weight. Its secondary effect (such as downsizing) will be
taken into account as part of the vehicle sizing algorithm. Currently, each component is individually sized
to meet the vehicle technical performance. As a result, the effects of light-weighting might be optimistic.
This assumption will be revisited in future studies. The glider percentage mass reduction values selected

for the model are:
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- 0% (reference vehicle)
- 5% reduction

- 7.5% reduction

- 10% reduction

- 15% reduction

- 20% reduction

5.4. Rolling Resistance
The following rolling resistance reduction values were selected:

- 0% (reference vehicle)
- 10% reduction

- 20% reduction

These values were chosen to bound the possible rolling resistance improvements expected in future

vehicles

5.5. Aerodynamic
The following aerodynamic reduction values were selected:

- 0% (reference vehicle)
- 10% reduction

- 20% reduction

These values were chosen to bound the possible rolling resistance improvements expected in future

vehicles

5.6. Electric Drive Vehicles

Interest in electric drive vehicle technologies is growing, and their development accelerating, in the
automotive industry. This growth represents a shift of focus from market entry and environmental drivers

to mainstream, customer-committed development.
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HVs combine at least two energy sources, such as an internal combustion engine (ICE), fuel cell system...
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with an energy storage system. Electric drive vehicles have the potential to reduce fuel consumption in

several ways, including the following:

e Regenerative braking: A regenerative brake is an energy mechanism that reduces the vehicle’s
speed by converting some of its kinetic energy into a storable form of energy for future use instead
of dissipating it as heat, as with a conventional friction brake. Regenerative braking can also
reduce brake wear and the resulting fine particulate dust.

e Engine shutoff under various driving conditions (e.g., vehicle stopped, low power demand).

e Engine downsizing, which may be possible to accommodate an average load (not a peak load),
would reduce the engine and powertrain weight. Higher torque at low speed from the electric
machine also allows the vehicle to achieve the same performance as conventional vehicles with a
lower vehicle specific power (W/kg).

e Optimal component operating conditions: For example, the engine can be operated close to its
best efficiency line.

e Accessory electrification allows parasitic loads to run on as-needed basis.

e The energy storage systems of PHEVs and battery electric vehicles (BEVs) can also be recharged,

further improving fuel displacement.

However, vehicle electrification also have disadvantages that could affect fuel consumption, including

increased vehicle weight due to additional components.

Two major types of hybrids have been considered for transportation applications: electrical and hydraulic.
Since Hydraulic Hybrid Vehicles have been studied almost exclusively for medium- and heavy-duty

applications, only HEVs have been considered in the present study.

HEVs combine electric and mechanical power devices. The main components of HEVs that differentiate
them from conventional vehicles are the electric machine (motor and generator), energy storage (e.g.,
battery or ultra-capacitors), and power electronics. The electric machine absorbs braking energy, stores

it in the energy storage system, and uses it to meet acceleration and peak power demands.

5.6.1. Electric Drive Powertrain Configurations

The various HEV powertrain configurations can be classified on the basis of their hybridization degree, as

shown in Figure 18. The hybridization degree is defined as the percentage of total power that can be
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delivered electrically. The higher the hybridization degree, the greater is the ability to propel the vehicle

32

using electrical energy.
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Figure 18 — Electric Drive Configuration Capabilities

A number of different powertrain architectures have been considered and introduced in the market for
different applications. These architectures are usually classified into three categories: series, parallel, and
power split. The following sections describe some of the possible powertrain configurations for each

architecture.

5.6.2. Series Hybrid Vehicle

The first hybrids were generally based on a series configuration. As shown in Figure 19, series hybrid
vehicles are propelled solely by electrical energy. When the engine is used, it provides a generator with
mechanical power, which is then converted into electricity. In the case of a fuel-cell system, the electrical
energy is directly used by the electric machine. The main advantage is that the engine speed is decoupled
from the vehicle speed, allowing operating conditions at or close to the engine’s most efficient operating
point. The main drawback is that the main components have to be oversized to be able to maintain a
uniform performance, leading to higher vehicle weight. Finally, the large number of components and the

energy conversion from chemical to mechanical to electrical leads to lower powertrain efficiency.
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Figure 19 - Series Hybrid Electric Vehicle

Several variations of the series configuration have been considered. One of the important considerations
in the design of a series HEV is related to the use of a single gear ratio versus a two-speed transmission.
Using a single gear ratio usually leads to low maximum vehicle speed and poor performance at high speed
due to the low electric machine torque in that operating regime. When applications require better
performance at high speeds, a two-speed transmission is considered. If electric machines are used at each
of the wheels, instead of one single electric machine, torque vectoring is possible, improving vehicle

stability.

Currently, for light-duty vehicles, series configurations are essentially considered only for PHEV

applications.

5.6.3. Parallel Hybrid Vehicle

In a parallel configuration, the vehicle can be directly propelled by either electrical or mechanical power.
Direct connection between the power sources and the wheels leads to lower powertrain losses compared
to the pure series configuration. However, since all of the components’ speeds are linked to the vehicle’s

speed, the engine cannot routinely be operated close to its best efficiency curve.

Several subcategories exist within the parallel configuration:

e MHEV: A small electric machine is used to turn the engine off when the vehicle is stopped.

Examples include the Citroen C3.
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e Starter-alternator: This configuration is based on a small electric machine (usually 5 to 15 kW)
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located between the engine and the transmission. Because of the low electric-machine power,
this configuration is mostly focused on reducing consumption by eliminating idling. While some
energy can be recuperated through regenerative braking, most of the negative electric-machine
torque available is usually used to absorb the engine’s negative torque. Since the electric machine
speed is linked to the engine, the vehicle cannot operate in electric mode other than for extremely
low speeds (e.g., creep). In addition, the electric machine is used to smooth the engine torque by
providing power during high transient events to reduce emissions. The electric machine can be
connected to the engine either through a belt or directly on the crankshaft. Examples include the
Buick E-Assist (belt integrated), Honda Civic (crankshaft integrated), and Honda Accord

(Crankshaft integrated).

e Pre-transmission: This configuration has an electric machine in between the engine and the
transmission. The electric machine power ranges from 20 to 50kW for light duty applications,
which allows the driver to propel the vehicle in electric-only mode as well as recover energy
through regenerative braking. The pre-transmission configuration can take advantage of different
gear ratios that allow the electric machine to operate at higher efficiency and provide high torque
for a longer operating range. This configuration allows operation in electric mode during low and
medium power demands, in addition to the ICE on/off operation. The main challenge for these
configurations is being able to maintain a good drive quality because of the engine on/off feature
and the high component inertia during shifting events. Examples of pre-transmission HEVs

currently in production include the Hyundai Sonata Hybrid and the Infiniti M35 Hybrid.

e Post-transmission: This configuration shares most of the same capabilities as the pre-
transmission. The main difference is the location of the electric machine, which in this case is after
the transmission. The post-transmission configuration has the advantage of maximizing the
regenerative energy path by avoiding transmission losses, but the electric machine torque must

be higher because it cannot take advantage of the transmission torque multiplication.

5.6.4. Power Split Hybrid Vehicle

As shown in Figure 20, power split hybrids combine the best aspects of both series and parallel hybrids to
create an extremely efficient system. The most common configuration, called an input split, is composed

of a power split device (planetary gear transmission), two electric machines and an engine. Within this
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architecture, all these elements can operate differently. Indeed, the engine is not always on and the
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electricity from the generator may go directly to the wheels to help propel the vehicle, or go through an
inverter to be stored in the battery. The operational phases for an input split configuration are the

following:

e During vehicle launch, when driving, or when the state of charge (SOC) of the battery is
high enough, the ICE is not as efficient as electric drive, so the ICE is turned off and the
electric machine alone propels the vehicle.

e During normal operation, the ICE output power is split, with part going to drive the vehicle
and part used to generate electricity. The electricity goes either to the electric machine,
which assists in propelling the vehicle, or to charge the energy storage system. The
generator also acts as a starter for the engine.

e During full-throttle acceleration, the ICE and electric machine both power the vehicle,
with the energy storage device (e.g., battery) providing extra energy.

e During deceleration or braking, the electric machine acts as a generator, transforming the

kinetic energy of the wheels into electricity to charge the energy storage system.
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Figure 20 - Power Split Hybrid Electric Vehicle

Several variations of the power split have been implemented, including single-mode and multi-mode
power splits. The Two-Mode Hybrid is a full hybrid system that enables significant improvement in
composite fuel economy while providing uncompromised performance and towing capability. In city
driving and stop-and-go traffic, the vehicle can be powered either by the two electric motors or by the

ICE, or by both simultaneously. As shown in Figure 21, the Two-Mode Hybrid can also drive the vehicle
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using an input power-split range, a compound power-split range, or four fixed-ratio transmission gears.
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The system is flexible and efficient, with smaller motors, inverter module and battery that enable

numerous cost advantages.
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Figure 21 - Two Mode Transmission with Four Fixed Gears

The advantages of the Two-Mode Hybrid configuration are as follows:

- Transmits more power mechanically, which is more efficient and less costly.

- Delivers engine power with motors that are “right-sized” for regenerative braking and
acceleration assist.

- Maintains high efficiency over a wider range.

- Has at least one fixed gear ratio available (shift ratio).

- Allows a synchronous shift between two modes.

- Uses two planetary gear sets: one for input power split and torque multiplication and both for
compound power split.

- Allows high power density for an electro-mechanical infinitely variable transmission.

However, the addition of clutches to the transmission increases spin and pump losses and the engine may

not be at its optimum point in the fixed-gear mode.

Examples of single-mode power split hybrids include the Toyota Prius and Ford Fusion Hybrid. An example

of a multi-mode power split hybrid is the General Motors Chevrolet Tahoe.

5.6.5. Voltec Hybrid Vehicle

In the past couple of years, configurations allowing different operating modes (e.g., series and parallel,
parallel and power split) have been introduced in the market. The VOLTEC configuration from General

Motors is an example of these configurations. The VOLTEC powertrain architecture (Figure 22), also called
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the EREV (Extended Range Electric Vehicle), provides four modes of operating, including two that are
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unique and maximize the powertrain efficiency and performance. The electric transaxle has been specially
designed to enable patented operating modes, both to improve the vehicle’s electric driving range when
operating as a BEV and to reduce fuel consumption when extending the range by operating with an ICE.
The EREV powertrain introduces a unique two-motor electric-vehicle (EV) driving mode that allows both
the driving motor and the generator to provide tractive effort while simultaneously reducing electric
motor speeds and the total associated electric motor losses. For HEV operation, the EREV transaxle uses
the same hardware that enables one-motor and two-motor operation to provide both the completely
decoupled action of a pure series hybrid and a more efficient flow of power with decoupled action for

driving under light load and at high vehicle speed.
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Figure 22 - Voltec Hybrid Electric Vehicle [source: www.gm.com]

It is important to note that many different variations exist within each configuration (i.e., power-split
configurations can be single-mode, two-mode, three-mode, etc.) and between configurations (i.e., several
configurations are considered to be a mix of series, parallel and/or power-split). Overall, several hundred

configurations are possible for electric-drive vehicles.

5.6.6. Plug-in Hybrid Electric Vehicle

PHEVs differ from HEVs in their ability to recharge the energy storage system through the electric grid.
PHEVs energy storage systems have usually a higher total energy compared to HEVs and they also use a

larger portion of it (e.g., when most HEVs use 10 to 15% of their total battery energy, PHEVs use from 60
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to 70%). Since the vehicle is designed to have a high capacity energy storage, electrochemical batteries
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are usually used for this application. All the HEV configurations described above can be used as PHEVs. In
most cases, because of the desire to propel the vehicle using electrical energy from the energy storage

system, the electric machine power is greater for a PHEV compared to an HEV.

5.7. Vehicle-Level Control

The task of achieving fuel savings with a hybrid architecture depends on the vehicle performance
requirements and the type of powertrain selected as well as the component sizes and technology, the
vehicle control strategy, and the driving cycle. The overall vehicle-level control strategy is critical to
minimize fuel consumption while maintaining acceptable drive quality. Figure 23 illustrates a simple
acceleration, cruising and braking cycle for a full HEV, demonstrating the best usage of different power
sources based on the vehicle’s power demand. During small accelerations, only the energy storage power
is used (EV mode) and during braking, some of the energy is absorbed and stored. The engine does not
start to operate during low power demands, owing to its poor efficiency compared to the electrical

system. The engine is only used during medium and high power demands, where its efficiency is higher.
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Figure 23 - Hybrid Electric Vehicle Principles [source: www.gm.com]

While different vehicle-level control strategy approaches have been studied for electric drive vehicles

(e.g., rule based, dynamic programming, instantaneous optimization), the vast majority of current and
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future electric drive vehicles are using and expected to use rule-based control strategies. The vehicle level
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control strategies used in the study will be described later in the report.

5.8. Powertrain Electrification

The selection of hybridization degree and powertrain configuration is complex, since numerous options
exist. On the basis of current production vehicles as well as anticipated near-future trends, the following

powertrain configurations were selected for the modeling analysis to match Volpe’s requests:

- 12-V micro-hybrid electric vehicle (micro-HEV/start-stop system — no regenerative braking.)

- Belt-integrated starter generator (BISG)

- Crank-integrated starter generator (CISG)

- Full hybrid electric vehicle (HEV), single-mode power split configuration with fixed ratio

- Full hybrid electric vehicle (HEV), Pre-Transmission configuration with 6-speed DCT.

- Fuel cell HEV, series configuration, with 320-mile range on the FTP drive cycle

- PHEV, single-mode power split configuration with fixed ratio, with 20 AER on the FTP (standard
urban) drive cycle

- PHEV, Voltec extended-range electric vehicle (EREV) configuration with 30 AER on the FTP drive
cycle

- PHEV, Voltec EREV configuration, with 50 AER on the FTP drive cycle

- Battery electric vehicle (BEV), with 200 AER on the FTP drive cycle

Note that the AER values are based on unadjusted electrical consumptions. In addition, the belt losses
were included for both the micro-HEV and BISG cases. The pre-transmission parallel configuration was
not selected for PHEVs because the single-mode power split configuration is expected to represent the

highest volume of vehicles in the timeframe considered and provide a lower fuel consumption.
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6. Vehicle and Component Assumptions
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The purpose of this study is to demonstrate the feasibility of the Large Scale Simulation Process (LSSP)
rather than to generate final simulation results. Therefore, the vehicle and component assumptions will
only be briefly described in this section. Future studies in the next phase of this project will provide

additional detail on the technology and control strategy specifications.

6.1. Reference Vehicle

To demonstrate feasibility of the process, a single vehicle class will be presented: Midsize vehicle. The

reference vehicle is a midsize car with conventional powertrains and the specifications summarized below

in Table 4.
Table 4 — Reference Vehicle Main Specifications
Baseline Vehicle Specification Values
Glider mass (kg) 1,000
Drag coefficient 0.311
Frontal area (m?) 2.372
Rolling resistance coefficient 1 0.008
Rolling resistance coefficient 2 (speed term) 0.00012

All the mechanical losses of the components required to run the engine on the dynamometer are included

in the engine maps.

6.2. Transmission

As shown previously, the transmission ratios were selected to represent typical values for high-volume

vehicles currently on the market.

Power-split HEV and PHEV 20 AER transmissions have a planetary gear set with 78 ring teeth and 30 sun
teeth, similar to the Toyota Prius. The PHEV 40 AER has a planetary gear set with 83 ring teeth and 37 sun

teeth, similar to the GM Voltec. Fuel cell vehicles use a two-speed manual transmission to increase the
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are fixed gear.

The transmission shifting logic has a significant impact on vehicle fuel economy and should be carefully
designed to maximize the powertrain efficiency while maintaining acceptable drive quality. The logic used
in the simulated conventional light-duty vehicle models relies on two components: (1) the shifting
controller, which provides the logic to select the appropriate gear during the simulation; and (2) the

shifting initializer, the algorithm that defines the shifting maps (i.e., values of the parameters of the

shifting controller) specific to a selected set of component assumptions.

Figure 24 shows an example of a complete set of shifting curves for a light-duty vehicle. Two curves of the

same color (i.e., upshifting and downshifting curves) never intersect, thus ensuring that there are no shift

oscillations, which is important for drivability.

The shifting control algorithm used for the simulation is explained in the following section.

6.3.

6.3.1.

The transmission shifting logic has a significant impact on vehicle fuel economy and should be carefully
designed to maximize the powertrain efficiency while maintaining acceptable drive quality. The logic used

in the simulated conventional light-duty vehicle models relies on two components:
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Figure 24 - Shifting Speed Curves for Light-Duty Vehicle in Autonomie
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e The shifting controller, which provides the logic to select the appropriate gear during the
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simulation; and
e The shifting initializer, the algorithm that defines the shifting maps (i.e., values of the parameters

of the shifting controller) specific to a selected set of component assumptions.

6.3.1.1. Shifting Controller

The shifting controller determines the appropriate gear command at each simulation step. A simplified
schematic of the controller is shown in Figure 25. The letters and numbers in the discussion that follows

correspond to those shown in the figure.
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Figure 25 - Shifting Controller Schematic

The controller is based on two main shifting maps — one for upshifting (a), moving from a lower gear to
a higher gear, and another one for downshifting (b), moving from a higher gear to a lower gear — as well
as a state-machine (c) that defines the status of the system (e.g., no shifting, upshifting). Each shifting map
outputs a next-gear command y g, (t) and y,,, (t) based on the current accelerator pedal position a(t) and
vehicle speed V(t). The state machine is composed of different states, of which only one is active at any
time step; a change in state occurs whenever a transition condition from the active state becomes true

(i.e., an upshift will occur only if a set of conditions is true). The state that is active most of the time is the
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hold-gear state (d), which makes sense because, most of the time, the vehicle should be in gear and not
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shifting for drivability reasons. An upshift occurs when the upshifting gear yup(t) is strictly higher than
the current gear y(t) (1) (e.g., Yup(t) = 5 and y(t) = 4). For all vehicles, the shift does not necessarily
happen instantly when the command to shift is given, depending on the current pedal position. In
aggressive driving, i.e., at high accelerator-pedal positions (5), the shift happens as soon as the gear
transition (1) becomes true, ensuring optimal performance. In contrast, in “normal” driving, i.e., at low
pedal positions (2), there is an intermediate state (e) that allows the shift only when the gear condition
(1) is true for a minimum time 1. This constraint is imposed to avoid an excessive number of shifting events,
which would lead to unacceptable drive quality and increased fuel consumption. The upshifting itself is
executed in state (f), in which the shift command y,,,,4(t) is incremented (i.e., the next upper gear is
selected); once the shifting is completed (6), the state machine comes back to the hold-gear state (d).

Downshifting occurs in a similar way.

Currently, in Autonomie, a shifting event can only result in moving one gear up or one gear down: there
is no gear-skipping. Gear skipping is usually used under very specific conditions that are not encountered
during the standard FPT and HFET drive cycles considered in the study. As an additional level of robustness
in the Autonomie control algorithm, an upshift or downshift cannot occur if the resulting engine speed
would be too low or too high, respectively. This approach ensures that the engine is not operated below

idle or above its maximum rotational speed.

6.3.1.2. Shifting Initializer

Shifting Maps

The shifting controller uses shifting maps to compute the gear command. In the controller, the shift map
is a two-dimensional (2-D) look-up table indexed by vehicle speed and accelerator-pedal position. Defining
such a map is equivalent to defining the “boundaries” of each gear area; those boundaries are the shifting

speeds. Figure 26 illustrates that equivalence.



DRAFT )

1 1r
213 45
@ 3 142
g ° 344
S0.5 S 05
o o
D Xo
8 8
< <
0 0 r r r
0 20 40 60 0 20 40 60

Speed (m/s) Speed (m/s)
Figure 26 — Upshifting Gear Map (left), Upshifting Vehicle Speeds (right)

For each shifting curve, there are two key points: the “economical” shifting speed (at very low pedal
position) and the “performance” shifting speed (at high pedal position). The objective of the control
engineer is to combine both goals of the shifting control to fulfill the driver expectations: minimization of

fuel consumption on the one hand and maximization of vehicle performance on the other.

Economical Shifting Speeds

The economical shifting speed for an upshift or a downshift is the speed at which the upshift/downshift

occurs when the accelerator pedal position is very lightly pressed. V.X>¥*1 is the economical vehicle speed

for upshifting from gear k to gear k+1. VX¥17k is the downshifting speed for this same set of gears. The
vehicle speed shift points are computed from the engine shift points wX**! and wkt1~*. Figure 27

shows the engine speed shift points for an engine associated with a 5-speed transmission.
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Figure 27 — Example of Engine Speed Range in Economical Driving, and Economical Shift
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The initializing algorithm for the shifting controller computes the up- and downshifting speeds at zero

pedal position based on the four “extreme” shift points: upshifting from lowest gear (w2z2), upshifting

into highest gear (w)51~"), downshifting into lowest gear (w?2z;!), and downshifting from highest gear
NoN-1

(wego " 7). N is the number of gears. The speeds can be set by the user or left at their default values.

Below is a description of their default values in Autonomie:

o will=wige + Wmargin [Wiqe: engine idle speed; Wy qrgin: Speed margin, =50-100 rpm]
5 k . . .
o Wl = wige k—: (1 + €,4) [ki,k2: gear ratios for gears 1,2; €,,4: margin to avoid overlap, = 0.05—

0.1]
e wN717N: Engine speed at which best efficiency can be achieved

N-N-1 _ , N-1-N ~
Weco = Weco — wp [wp = 1,000 rpm]

Once those four speeds are computed, the remaining ones are computed by linear interpolation to allow
consistent shifting patterns that are acceptable to the drivers. For example, any upshifting speed is given

by Equation 1:

N—-1-N 1-2
isi+1 _ Weco — Weco

a)eCO N _ 2

(-1 + wlzl?, 1<is<N-1

In a shifting map, the vehicle upshifting speed from gear i to i+1 shall be strictly higher than the
downshifting speed from gear i+1 to i. Otherwise, the downshifting speed will always request gear j while
gear i+1 is engaged and vice-versa, resulting in oscillations between gears that would be unacceptable to
the driver. For this study, the algorithm in the initialization file prevents that by making sure the following

relation is true:

. L K
is ™ > i3 (I ew),  1SISN-1
2

The values of the engine economical shifting speeds at lowest and highest gears are automatically defined

on the basis of the engine and transmission characteristics.

Finally, the vehicle economical up- and downshifting speeds can be computed using the engine up- and

downshifting speeds, the gear ratio, the final drive ratio and the wheel radius:

i~i+1
Vi—>i+1 _ WEeo ‘R
eco - . wh
kikrp

where kgp is the final drive ratio and R, is the wheel radius.
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Performance Shifting
During performance, the gears are automatically selected to maximize the torque at the wheel. Figure 28
illustrates that gear selection, which consists of finding the point where the engine peak torque (reported

at the wheels) curve at gear k falls under the one at gear k+1.
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Figure 28 — Maximum Engine Torque at Wheels and Performance Upshift Speeds

The performance downshifting speed is given by the performance upshifting speed and the difference

between the economical shifting speeds:

i — . i =i+l _ pi+loi (iRl pitlod
Avperf = Qpfec AVeco & Vperf perf = %pfec ( perf perf

Final Shifting Curves

The definition of the final shifting curves is critical to properly evaluating the benefits of transmission
technologies while maintaining acceptable performance. Figure 29 shows how a set of upshifting and
downshifting curves for two adjacent gears is built, based on selected vehicle speeds and accelerator
pedal positions. At low pedal positions (i.e., below agfo ), the upshifting speed is the economical upshifting
speed. Similarly, below aZ%, the downshifting speed is the economical downshifting speed. This approach
ensures optimal engine operating conditions under gentle driving conditions. At high pedal positions (i.e.,
above a,.,s), the shifting speed is the performance shifting speed, ensuring maximum torque at the

wheels under aggressive driving conditions.
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Figure 29 — Design of Upshifting and Downshifting Speed Curves for Two Adjacent Gears

6.3.1.3. Torque Control during Shifting Events

Figure 30 shows the transmission clutch pressure, output torque, and engine speed curves during a
change from 1st to 2nd gear. The output torque experienced both a trough period (lower than the torque
in the original gear) and a crest period (higher than the torque in the original gear). The trough period is
called a torque hole, while the crest period is called a torque overshoot. The torque hole is defined by
depth and width, where the depth is the difference between minimum torque and the torque in previous

gear, and the width is the half value of the maximum width of the torque hole.
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Figure 30 — Generic Shift Process for Automatic Transmission
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The bigger the torque hole, the larger the decrease of torque in torque phase, which results in a more
significant reduction in acceleration. Because the decrease in acceleration causes discomfort for both the
driver and passengers, the torque hole should be as shallow and narrow as possible. Torque reduction
behavior is a well-known phenomenon, observed during vehicle testing and referenced in several papers

and presentations.

Autonomie integrates a low-level control algorithm that reproduces the torque hole phenomenon. Figure
31illustrates, in detail, the behavior of the vehicle model for a short period of time [205 sec to 205.8 sec].

The area highlighted by the grey circle indicated the torque hole during a shifting event.
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Figure 31 — Torque Hole in Autonomie during Shifting Event

6.3.1.4. Shifting Maps

All shifting maps used for the simulations are presented below. The shifting maps have been developed
to ensure minimum fuel consumption across all transmissions while maintaining an acceptable drivability.
While plant models with higher degree of fidelity would be necessary to accurately model the impact of

each technology on the drivability, using such models was not appropriate for the current study. As a
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result, the work related to the drive quality was focused on number of shifting events, time in between

shifting events, engine time response and engine torque reserve.
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Figure 32 - 5-speed automatic up (plain lines) and down (dotted lines) shifting map
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6.3.2. Torque Converter

50
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A torque converter is a hydrodynamic fluid coupling used to transfer rotating power from a prime mover,
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such as an internal combustion engine, to a rotating driven load. It is composed of an impeller (drive
element); a turbine (driven component); and a stator, which assist the torque converter function. The
torque converter is filled with oil and transmits the engine torque by means of the flowing force of the
oil. The device compensates for speed differences between the engine and the other drivetrain

components and is therefore ideally suited for start-up function.

The torque converter is modeled as two separate rigid bodies when the coupling is unlocked and as one
rigid body when the coupling is locked. The downstream portion of the torque converter unit is treated
as being rigidly connected to the drivetrain. Therefore, there is only one degree of dynamic freedom, and
the model has only one integrator. This integrator is reset when the coupling is locked, which corresponds
to the loss of the degree of dynamic freedom. Figure 35 shows the efficiency of the torque converter used

for the study.

The effective inertias are propagated downstream until the point where actual integration takes place.
When the coupling is unlocked, the engine inertia is propagated up to the coupling input, where it is used
for calculating the rate of change of the input speed of the coupling. When the coupling is locked, the

engine inertia is propagated all the way to the wheaels.

The torque converter model is based on a lookup table, which determines the output torque depending
on the lockup command. The upstream acceleration during slip and the downstream acceleration are

taken into account in calculating the output speed.


http://en.wikipedia.org/wiki/Fluid_coupling
http://en.wiktionary.org/wiki/prime_mover
http://en.wikipedia.org/wiki/Internal_combustion_engine
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Figure 35 — Torque Converter efficiency

Figure 36 describes the conditions under which the torque converter will be locked. The same algorithm
is used to represent current torque converter lockup logic, as well as future aggressive lockup logic. In
today’s vehicles, the torque converter locks at vehicle speeds between 30 and 40 mph under most driving
conditions. In the future, it is expected that it can be locked as soon as the second gear is engaged.
Different sets of parameters were developed in the algorithm to represent both current and future lock-

up conditions.

Vehicle Speed

If the shifting is not in progress, the torque converter

is locked (1) at a specific gear number and (2) pedal Lockup Signal

Pedal Position

position for a given vehicle speed.
Gear Number

Figure 36 — Torque Converter Lockup Control Algorithm

6.4. Electric Machine

Electric machine performance data were provided by Oak Ridge National Laboratory and represent a
synchronous permanent-magnet technology. Figure 37 is the electric machine efficiency map used for the

micro-HEV, BISG, and CISG; and Figure 38 is the map for the HEV and PHEVs. The maps were developed
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assuming normal temperature operating conditions. Electric machine inverter losses are included in the
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maps.

Figures 10 and 11 represent peak torque curves. A constant ratio was assumed between the continuous

and peak torque curves, as follows:

e 2 for the micro-HEV, BISG, and CISG
e 2 for the motor 1 and 1.5 for the motor 2 of the power-split HEV and blended PHEV
e 1 for EREV, BEVs, and fuel cell HEV

The electric machine specific weight is 1,080 W/kg and its controller 12,000 W/kg. The peak efficiency is

set to 90%.

The main focus of BISG hybrid vehicles is to capture regenerative braking energy as well as provide
minimal assist to the engine during high-transient operating modes. Because the electric machine is linked
to the engine through a belt, its power is usually limited. A value of 7 kW is assigned to the BISG for this

project.

CISG hybrid vehicles focus on the same areas of improvement as BISG vehicles. However, owing to its
position, the electric machine can be larger; consequently, more benefits can be obtained from
regenerative braking and assist in a CISG vehicle than in a BISG vehicle. An electric machine size of 15 kW

was selected for the midsize car.
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Figure 37 — Electric Machine Map for Micro- and Mild HEV
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Figure 38 - Electric Machine Map for Full HEV

Fuel Cell System
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The fuel cell system is modeled to represent the hydrogen consumption as a function of the produced

power. The system’s peak efficiency is 59%, including the balance of plant, and represents normal

temperature operating conditions. The data set cannot be provided here because it is proprietary. The

system’s specific power is 659 W/kg.

The hydrogen storage technology selected is a high-pressure tank with a specific weight of 0.04 kg H,/kg,

sized to provide a 320-mile range on the FTP drive cycle.

6.6.

Energy Storage System

The battery used for the BISG and CISG HEVs and the PHEVs is lithium-ion, because it is assumed the most

likely technology for HEV batteries in the near future. Table 5 provides a summary of the battery

characteristics and technologies used by each powertrain.

Table 5 - Reference Battery Characteristics

Powertrain Types Technology Reference Cell Capacity (Ah)
Micro-HEV Lead acid 66
BISG Li-ion 6
CISG Li-ion 6
HEV Li-ion 6
PHEVs Li-ion 41




DRAFT

The battery capacity selected for each option to allow a global pack voltage between 200 V (full HEV case)
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and 350 V (BEV case). The energy storage cell weights for the PHEVs are based on 82 Wh/kg for PHEVs 30
and 50 AER; and 90 Wh/kg for the BEVs. The energy storage cell weights for micro-HEV, BISG, CISG, and
full HEVs are based on 2000 W/kg.

Different useable state-of-charge (SOC) ranges have also been selected depending on the powertrain

configuration:

e 10% SOC range for micro, mild, and full HEVs
e 60% SOC range for PHEVs and 95% for BEVs

Over time, batteries lose some of their power and energy capacity. To maintain the same performance at
the end of life as at the beginning of life, an oversize factor is applied for both power and energy. These
factors are supposed to represent the percentage of power and energy that will not be provided by the
battery at the end of life compared with the initial power and energy given by the manufacturer. The
performance data used to model the other components are based on normal temperature operating

conditions.

Vehicle test data have shown that, for the drive cycles and test conditions considered, battery cooling
does not draw a significant amount of energy, if any at all, for most of the vehicle powertrain
architectures. The exception is BEVs, for which an additional constant power draw is used to account for

battery cooling.

The energy storage system block models the battery pack as a charge reservoir and an equivalent circuit.
The equivalent circuit accounts for the circuit parameters of the battery pack as if it were a perfect open-
circuit voltage source in series with an internal resistance. The amount of charge that the energy storage
system can hold is taken as constant, and the battery is subject to a minimum voltage limit. The amount
of charge required to replenish the battery after discharge is affected by coulombic efficiency. A simple
single-node thermal model of the battery is implemented with parallel-flow air cooling. The voltage is

calculated as Vout = Voc — Rint * 1, With Ve = open-circuit voltage, Ri: = internal resistance (two separate sets

of values for charge and discharge), and I = internal battery current (accounts for coulombic efficiencies).

6.7. Accessory Loads



DRAFT

Electrical and mechanical accessory base loads are assumed constant over the drive cycles, with a value
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of 220 W. Derived from data from Argonne’s Advanced Powertrain Research Facility, this value is used to
represent the average accessory load consumed during the standard urban FTP and EPA’s Highway Fuel
Economy Test (HFET) drive-cycle testing on a dynamometer. Only the base load accessories are assumed

during the simulations, similarly to the dynamometer test procedure.

6.8. Driver

The driver model is based on a look-ahead controller. No anticipation is imposed (0 sec anticipated time)

during sizing for acceleration testing, in order to provide realistic vehicle performances.

6.9. Vehicle-Level Control Algorithms

All the vehicle-level control algorithms used in the study have been developed on the basis of vehicle test
data collected at Argonne’s Advanced Powertrain Research Facility. It is important to note that while the
logic for the vehicle-level control algorithms were developed on the basis of test data, only the logic has
been used for the present study, since the calibration parameters have been adapted for each vehicle to
ensure fuel consumption minimization with acceptable drive quality (i.e., acceptable number of engine

on/off conditions).

6.9.1. Micro- and Mild HEV

The vehicle-level control strategies of the micro- and mild (i.e., BISG and CISG) micro-HEVs is similar in

many aspects due to the low peak power and energy available from the energy storage system.

For the micro HEV case, the engine is turned off as soon as the vehicle is fully stopped and restarted as

soon as the brake pedal is released. No regenerative braking is considered for that powertrain.

For the mild HEV cases, the engine is turned off as soon as the vehicle is fully stopped. However, since
some regenerative braking energy is recovered, the vehicle is propelled by the electric machine during

vehicle launch, allowing the engine to be restarted later.

6.9.2. Single-Mode Power-Split HEV

The vehicle-level control strategy of a single-mode power split HEV was based on the Toyota Prius analysis.
The control implemented can be divided into three areas: engine-on condition, battery SOC control, and

engine operating condition. Each algorithm is described below.
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Engine-On Condition

The operation of the engine determines the mode, such as pure electric vehicle (PEV) mode or HEV mode.
The engine is simply turned on when the driver’s power demand exceeds a predefined threshold. As
shown in Figure 39, the engine is turned on early if the SOC is low, which means that the system is changed

from PEV mode to HEV mode to manage the battery SOC.
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Figure 39 — Engine-On Condition — 2010 Prius Example Based on 25 Test Cycles

The engine is turned off when the vehicle decelerates and is below a certain vehicle speed.

SOC Control

The desired output power of the battery is highly related to the energy management strategy. When the
vehicle is in HEV mode, the battery power is determined by the current SOC, as shown in Figure 40. The
overall trend shows that the energy management strategy tries to bring the SOC back to a regular value
of 60%. Both the engine on/off control and the battery power control are robust approaches to manage
the SOC in the appropriate range for an input-split hybrid. If the SOC is low, the engine is turned on early,
and the power split ratio is determined to restore the SOC to 60% so that the SOC can be safely managed
without charge depletion. In summary, the battery SOC is controlled by raising (low SOC) or lowering (high

SOC) the engine power demand required to meet the vehicle speed trace.
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Figure 40 — SOC Regulation Algorithm — 2010 Prius Example Based on 25 Test Cycles

Engine Operation

The two previously described control concepts determine the power split ratio. The concepts do not,
however, generate the target speed or torque of the engine because the power split system could have
infinite control targets that produce the same power. Therefore, an additional algorithm is needed to
determine the engine speed operating points according to the engine power, as shown in Figure 41. An
engine operating line is defined on the basis of the best efficiency curve to select the optimum engine

speed for a specific engine power demand.
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Figure 41 — Example of Engine Operating Target — 2010 Prius Example Based on 25 Test Cycles
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In summary, the engine is turned on based on the power demand at the wheel along with the battery
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SOC. If the engine is turned on, the desired output power of the battery is determined on the basis of the
current SOC and the engine should provide appropriate power to drive the vehicle. The engine operating
targets are determined by a predefined line, so the controller can produce required torque values for the

motor and the generator on the basis of the engine speed and torque target.

6.9.3. Voltec PHEV
The Voltec system has four different operating modes, as shown in Figure 42.

During EV operation:

1. One-motor EV: The single-speed EV drive power-flow, which provides more tractive effort at
lower driving speeds
2. Two-motor EV: The output power split EV drive power flow, which has greater efficiency than

one-motor EV at higher speeds and lower loads

During extended-range (ER) operation:

3. One-motor ER (series): The series ER power flow, which provides more tractive effort at lower
driving speeds
4. Combined two-motor ER (split): The output power split ER power-flow, which has greater

efficiency than series at higher speeds and lighter loads

A vehicle-level control strategy was developed on the basis of vehicle test data to properly select each of
the operating modes. The logic developed for the power split mode is similar to the one for the input split

configuration discussed previously.

For the two-level EV mode, an algorithm has been developed to minimize the losses of both electric
machines at every sample time on the basis of each component’s efficiency map. For the series mode, the
combination of the engine and electric machine losses is also minimized at every sample time. It is
important to note that the engine is not operated at its best efficiency point, but rather along its best

efficiency line for drive quality and efficiency reasons.
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Figure 42 - Voltec Operating Modes [www.gm.com]

6.9.4. Fuel Cell HEV

Unlike the other vehicle-level controls previously discussed, the algorithm for the fuel cell HEVs is not
derived from test data, due to the lack of test vehicles. Instead, dynamic programming is used to define
the optimum vehicle-level control algorithms for a fuel cell vehicle. A rule-based control is then
implemented to represent the rules issued from the dynamic programming. Overall, owing to the high
efficiency of the fuel cell system, energy storage only recuperates energy during deceleration and propels
the vehicle under low-load operations — the fuel cell system does not recharge the battery. Unlike electric

drive powertrains with an engine, the battery does not smooth the transient demands. An example of fuel

cell hybrid operations is shown in Figure 43.
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Figure 43 — Component Operating Conditions of a Fuel Cell Vehicle on the Urban European Drive
Cycle using Dynamic Programming

6.10. Vehicle Simulation Conditions

All vehicle simulations were performed under hot conditions (i.e., 20°C ambient temperature with warm
components). However, a cold start penalty was applied after the simulations. A cold start penalty of 12%
was applied for the fuel consumption of the FTP for conventional vehicles, HEVs, and PHEVs; values of 0%

were used for BEVs.

Simulated test procedures followed the current recommendations of the EPA, with the two-cycle test
based on the FTP and HFET drive cycles. Combined values are calculated on the basis of a 55% city and
45% highway cycle using the standard test procedure. Figure 44 and Figure 45 show the drive cycles used

in the simulations.
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Figure 45 — HFET Drive Cycle

For PHEVs, the SAE J1711 standard procedure was implemented. In 2006 SAE formed a task force
committee to revise SAE J1711. The original J1711 covered both HEVs and PHEVs, but the PHEV section
was not well developed because at the time of its writing there was very little PHEV hardware with which

to validate the procedures. The new procedures address both blended and extended-range types of
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PHEVs, and do so on the basis of test procedure development with real test hardware. SAE J1711 was
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balloted in 2010 with the title, “Recommended Practice for Measuring the Exhaust Emissions and Fuel

Economy of Hybrid-Electric Vehicles, Including Plug-in Hybrid Vehicles.”

For any given test schedule, the J1711 procedure approach is comprised of two separate test procedures.
One is the Full Charge Test (FCT), which captures all charge-depleting-mode fuel and electricity
consumption results. The other is the Charge-Sustaining Test (CST), which is conducted the same way
hybrids have been tested for over a decade. PHEV test procedures also define the steps and requirements

for soak and charging for the FCT.

Charge-Depleting Test

The FCT is a series of cycles of the same schedule run in series. The test starts at a full charge and runs in
charge-depleting (CD) mode until charge sustaining (CS) is observed. See SAE J1711 for more details on
the end-of-test criterion and finding the exact point where CD operation transitions to charge-sustaining

operation.

For any given test cycle, the CD mode results can be processes in many different ways. One method is to
lump the depleting results and associate the results for the particular range distance of operation from
full charge until the transition to CS mode occurs. This requires finding the charge-depleting range, shown

in Figure 46 as “Rcda.”

Rcda

Pass EOT Criterion

SOC
<—

stop

Figure 46 — Representation of Charge Depleting Range Concept

For PHEVs with a blended depleting operation, the CD results include both fuel and electricity
consumption. For EREV PHEVs, the equivalent all-electric range is calculated (similar but not exactly the
Rcda; see California ARB rules for definition of equivalent all-electric range), and the electric energy

consumption is associated with that range distance.
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Charge-Sustaining Test

The CST is similar to conventional vehicle testing. The only significant additional requirement is to charge
balance during the test. A net energy change of smaller than 1% of the consumed fuel energy is assumed
to be charge-balanced. For rechargeable energy storage systems comprised of batteries, it is defined as

Axh multiplied by the average of the initial and ending voltage.

Combining CD and CS Mode Using Utility Factors

Direct comparison of PHEV results with different depleting modes and varying battery capacities is not
possible. Whereas conventional vehicle fuel use is only mildly dependent on distance driven, PHEVs have
two modes that are entirely dependent on the distance traveled (energy depleted) between charge
events. Average daily distance is not useful because it will not provide information about the proper split
between CD and CS modes. What is needed is the daily driving distance profile. The 2001 National Highway
Traffic Safety Administration data was processed in order to calculate a percentage split between CD and

CS mode for a given vehicle’s CD range. The fleet utility factor (UF) is shown in Figure 47 below.
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Figure 47 - Fleet Utility Factors

The UF-weighted results can be calculated in one of two ways. For any given cycle, the CD range (from the
FCT) is found and the lumped CD fuel and electricity consumption rates are weighted with the CS results

according to the fleet UF.

The second UF approach weights the results cycle by cycle. This approach is less prone to calculation

anomalies associated with determining CD range. It is also more robust for PHEVs that vary the controls
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as the battery is being depleted. The approach fractionalizes the UF into weighting factors for each cycle
that add up to the total UF for the total distance traveled in all CD cycles tested (different than the

estimated CD range). The equation is shown below.

lastCD

}E,?ﬁ = TLT(T * nfa’e) lTF((? - l) * D{jn’e )) .D;‘ ]+ [‘l - ErJF(JRCDC )] * }rCST

i=1

lastC.

[xTF(f * LU:((I _l) ch.n’e )) ECDI]

Yurw = utility factor-weighted fuel consumption, in gal/mi

Eurw = utility factor-weighted AC electrical energy consumption, in AC Wh/mi
UF(x) = appropriate utility factor fraction at a given distance, x

Yeoi = fuel consumption, in gal/mi, for the it test in the FCT

Yest = fuel consumption, in gal/mi, for the CST

Ecpi = AC electrical energy consumption, in AC Wxh/mi, for the it test in the FCT

For each vehicle class considered in this study, all the vehicles have been sized to meet the same

requirements:

e Initial vehicle movement to 60 mph in 9 sec + 0.1 sec
e Maximum grade (gradeability) of 6% at 65 mph at gross vehicle weight (GVW)

e Maximum vehicle speed >100 mph

These requirements are a good representation of the current American automotive market as well as
American drivers’ expectations. A relationship between curb weight and GVW was developed on the basis

of current technologies to estimate the GVW of future technologies.
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The Large-Scale Simulation Process was developed by Argonne to run a very large number of
vehicles/simulations in a fast and flexible way. It allows Argonne to quickly respond to Volpe and
DOT/NHTSA requests to be able to simulate any technology combination in any vehicle class. The

following subsections describes the different steps of the process.

7.1. Vehicle Spreadsheet Definition

A template spreadsheet contains the basic information of a vehicle such as vehicle name, vehicle class,
and vehicle technology, as well as components information such as battery technology, engine

technology, and transmission type.

The template spreadsheet contains seven tabs: Vehicle, Parameter, Control, Sizing, Run, Translation, and
Assumptions. In each tab, columns outline vehicle configurations. Four columns refer to the four low-

electrification-level vehicles and 11 columns refer to the high-electrification-level vehicles.
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The Vehicle tab, shown in Figure 48, defines the initialization files, the component models required for

each vehicle, and the vehicle configuration selected. The initialization files selected will depend on the

tree selection and the technological combination nominated for that vehicle.
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Figure 48 — Vehicle Setup — Vehicle Tab
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The Parameter tab, shown in Figure 49, defines the values of the components specific to the vehicle

designated (e.g., powers, masses, performance constraints).
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Figure 49 — Vehicle Setup — Parameter Tab
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The Control tab, shown in Figure 50, selects the appropriate controller for the designated vehicle.
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Figure 50 — Vehicle Setup — Control Tab
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The Sizing tab selects the appropriate sizing rule and algorithms with which to run the vehicle performance

test (Figure 51

).
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Figure 51 — Vehicle Setup - Sizing Tab
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7.1.5. RunTab

The Run tab selects the drive cycle/procedure that needs to be run (Figure 52).
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Figure 52 — Vehicle Setup — Run Tab
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7.1.6. Translation Tab

The Translation tab, shown in Figure 53, translates and transfers every input into Autonomie to build the

vehicle model.
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Figure 53 — Vehicle Setup — Translation Tab
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7.1.7. Assumption Tab

The Assumption tab describes the vehicle and component assumptions used to define the Vehicle tab

(Figure 54).
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Figure 54 — Vehicle Setup — Assumption Tab
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7.2. Multi-Spreadsheet Expansion/Duplication
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After the Large-Scale Simulation Process defines the spreadsheet with all the component and vehicle
inputs, a multiplier code, shown in Figure 55, expands the reference/template spreadsheet into as many
spreadsheets as needed to define the vehicle’s technological combinations based on the decision trees’

input.

The template spreadsheet is duplicated, multiplied, and expanded to define the complete combination

tree equivalent to a total of 27,600 vehicles created.
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Figure 55 — Multi Spreadsheet Expansion/Duplication
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8. Distributed Computing Process

75

At that stage of the large scale simulation process, all the vehicles are created and ready to be sized and
simulated in Autonomie. Running 27,600 vehicles requires more than 250,000 simulations, from sizing
algorithms — imposing recurrence and iteration/looping — to vehicle simulation on cycles and combined

or PHEV procedures.

With the multitude of technology combinations to simulate, the usual computing resources are no longer
practical. Running all of the simulations on one computer would take several months or years before any
analysis could be completed. Thanks to advances in distributed computing, simulation time can be greatly
reduced. Among the computing resources available at Argonne National Laboratory is a cluster of 160
worker nodes dedicated to the System Modeling and Control Group. A larger computing facility could be

used in the future to further accelerate the simulations.

8.1. Setup

The researchers of the System Modeling and Control Group use Autonomie as the simulation framework,
synchronized by a cluster head node computer. The head computer extracts the data from the Excel files
describing the different technology pathways and distributes it to the researchers, as diagrammed in
Figure 56. An algorithm optimizes the distribution of jobs for vehicle simulations and parametric studies.

The total simulation time for the 27,600 vehicles is about 115 hours (~5 days).
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Figure 56 - Diagram of Distributed Computing Process

8.2. Distributed Computing Flexibility

One of the biggest advantages of the distributed computing is that it facilitates the quick rerun of
simulations, which occurred many times during this study. This experience allowed Argonne to develop a
new process: an ultimate Large-Scale Simulation Process (LSSP) that is functional, smooth, and flexible,
with the ability to easily and quickly add and rerun as many vehicles and new technologies as needed. For
example, the second phase of the study will include 14 engine technologies, only six of which are currently
simulated. The generic process will be able to automatically handle the additional technologies without
any code modification. As a result, the VOLPE model’s future technological needs will be easily and quickly

integrated at any time and proceed to new runs in order to feed the model for CAFE rulemaking analyses.
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9. Vehicle Sizing Process
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9.1. Vehicle Technical Specifications

To compare different vehicle technology-configuration-powertrain combinations, all vehicles to be

studied are sized to meet the same requirements:

e Initial vehicle movement to 60 mph in 9 sec £ 0.1 sec
e Maximum grade (gradeability) of 6% at 65 mph at GVW

e Maximum vehicle speed >100 mph

These requirements are a good representation of the current American automotive market and of
American drivers’ expectations. The relationship between curb weight and GVW for current technology-
configuration-powertrain combinations was modeled and forms the basis for estimating the GVWs of

future vehicle scenarios.

9.2. Component Sizing Algorithms

Owing to the impact of the component maximum torque shapes, maintaining a constant power-to-weight
ratio for all configurations leads to an erroneous comparison between technologies because of different
vehicle performances (l.e. 0-60mph). Each vehicle should be sized independently to meet the vehicle

technical specifications.

Improperly sizing the components will lead to differences in fuel consumption and will influence the
results. On this basis, we developed several automated sizing algorithms to provide a fair comparison
between technologies. Algorithms have been defined depending on the powertrain (e.g., conventional,

power split, series, electric) and the application (e.g., HEV, PHEV).

All algorithms are based on the same concept: the vehicle is built from the bottom up, meaning each
component assumption (e.g., specific power, efficiency) is taken into account to define the entire set of
vehicle attributes (e.g., weight). This process is always iterative in the sense that the main component
characteristics (e.g., maximum power, vehicle weight) are changed until all vehicle technical specifications
are met. The transmission gear span or ratios are currently not modified to be matched with specific
engine technologies. On average, the algorithm takes between five and 10 iterations to converge. Figure

57 shows an example of the iterative process for a conventional vehicle.
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Figure 57 — Conventional Powertrain Sizing Algorithm

Since each powertrain and application is different, the rules are specific:

e For HEVs, the electric-machine and battery powers are determined in order to capture all of the
regenerative energy from an FTP cycle. The engine and the generator are then sized to meet the
gradeability and performance (initial vehicle movement to 60 mph) requirements.

e For PHEV20s, the electric machine and battery powers are sized to follow the FTP cycle in electric-
only mode (this control is only used for the sizing; a blended approach is used to evaluate
consumptions). The battery’s usable energy is defined to follow the FTP drive cycle for 20 miles,
depending on the requirements. The engine is then sized to meet both performance and

gradeability requirements (usually, gradeability is the determining factor for PHEVs).
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e For PHEV40s, the main electric-machine and battery powers are sized to be able to follow the

79

aggressive US06 drive cycle (duty cycle with aggressive highway driving) in electric-only mode.
The battery’s usable energy is defined to follow the FTP drive cycle for 40 miles, depending on the
requirements. The genset (engine + generator) or the fuel cell systems are sized to meet the
gradeability requirements.

e For BEVs, the electric machine and energy storage systems are sized to meet all of the vehicle

technical specifications.

The micro-HEV, BISG, and CISG have sizing results very similar to their conventional counterparts because

they all use the same sizing rule.
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Vehicle Simulation Process
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Once the vehicles are sized to meet the same vehicle technical specifications, they are simulated following

the appropriate standard driving cycles (27,600 vehicles or >250,000 runs). It is important to properly

store individual results as structured data because they will be reused to support database generation

(see Section 11).
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Figure 58 — Results Folder Organization for Individual Simulations
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Figure 58 shows the folder organization for each individual simulation. Each folder contains the results for
one combination and characterizes one branch/path of the tree. Folders can contain up to five directories,
depending on the vehicle technology and the type of run performed. Results are divided into directories
representing the cycle or procedure simulated. For example, the combined procedure for conventional
vehicles has two parts separating the FTP and HFET run, and the PHEV procedure has four parts separating
the FTP and HFET runs as well as the charge-sustaining and charge-depleting modes. The last directory is

the sizing structure (performance test).

10.1. Run File

“xx.a_run” includes all the information of the vehicle as well as a cycle/procedure as shown in Figure 59.

This file allows us to reproduce the simulation in the future if modifications or changes are to occur.

[ 00.a_run [W\04 - Simulations\WOLPE_2013 results\02 - Simulation results\bacth2 - 08212013\Midsize CONV_DI20L 3AU_MRO_AEROO_ROLLO 081413 141116\conv_DI20L 5AU_MRO_ROLLO AEROQ_au\Combined Procedure (FTP+HWFET) P... l = | B |t

File Edit View Settings 7
DS @%@ EQa@|p

1 <?xml version="1.8" standalone="yes"?>

2B <simulation DisplayName="conv_midsize_au_2wd WOLPE" Description=" Generic midsize conventional with an automatic transmission, 2 wheel drive, including cost and Green House Gases” Proprietar!

3 <Version Author="amoawad" Date="83/27/2@13 83:24:47.325 PM"/>

4 <Property Name="Application” value="Light Duty"/>

5 <Software Name="Matlab" Version="R2@1@a (32-bit)"/> E

60 <system mdl model name="conv midsize au 2wd VOLPE" Displaylame="conv midsize au 2wd VOLPE" name="veh" layout="vehicle.a layout" configuration="veh.a config" picture="blank.jpg" empty con
2233 <sizing rule_file="sr_conv_accel_eng_pwr_passing" grade_compo="eng" path="\\\ms-81\cluster\volpe_2613\\users\amoawad\save_simu\midsize_conv_di26] Sau_mr®_aerod_rolle_881413 141116\conv D!
2315 <setup decimation="10" ghl_stop_time="1529"/>
2316 <process DisplayName="Highway Cycle” name="highway_cycle” optional="false” FileName="run cycle array.m” operator="false” group="Cycle” icon="process.png" Israpper="false™>

2435 </simulation>
-
Ln1/2436 Coll/80 Sel0 SellnO 208 KB UTF-8 LF INS XML Document

Figure 59 — Autonomie Run File

10.2. Data.mat File

“data.mat” is the results file containing all of the vehicle parameters and all of the time-based signals. A

sample of signals and parameters included in data.mat is shown in Figure 60.
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Name = Value
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drv_key_on_dmd_simu <15291d double>
drv_lin_spd_dmd_simu <15291x1 double>
drv_trq_dmd_simu 15291 double>
eng <1 struct>

eng_ctrl_cmd_fuel_off_simu 15291 double>
eng_ctrl_cmd_on_simu_} <1529 double>
eng_ctrl_cmd_simu <15291x double>
eng_ctrl_cstr_trg_hot_max_simu <15291d double>
eng_ctrl_cstr_trg_hot_min_simu <15291x1 double>
eng_ctrl_dmd_trg_simu <15291:d double>
eng_ctrl_trs_fuel_cut_off_simu <15291x1 double>
eng_ctrl_trs_on_simu <15291:d double>
eng_ctrl_trs_trg_simu <15291x1 double>
eng_plant_cmd_simu <15291d double>
eng_plant_co_simu <15291x1 double>
eng_plant_eff total simu <15291d double>
eng_plant_energy_in_total_simu <15291x1 double>
eng_plant_energy_loss total_simu 15291 double>
eng_plant_energy_out_total_simu <15291x1 double>
eng_plant_ex_equiv_simu 15291 double>
eng_plant_ex_gas_flow_simu 2152915 doublex
eng_plant_ex_gas_temp_simu <15291x double>
eng_plant_exterior_temp_simu <15291d double>
eng_plant_fuel_cum_simu <15291x1 double>
eng_plant_fuel_rate_simu <15291:d double>
eng_plant_hc_simu <15291x1 double>
eng_plant_htrej_cum_simu <15291:d double>
eng_plant_htrej_rate_simu <15291x1 double>
eng_plant_nox_simu <15291d double>
eng_plant_o2_simu <15291x1 double>
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Figure 60 — Autonomie data.mat File

10.3. Vehicle Model

“* mdl” represents the complete vehicle model as shown in Figure 61. Saving each vehicle model ensures

that any simulation can be replicated at any time.

prop——

.

mamory_wan_nts_bes

v pnt_sam

Figure 61 — Autonomie Conventional Vehicle
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10.4. Results XML File

83

As shown in Figure 62, “simulation.a_result” is an XML version of the results file that includes the main

simulation inputs and outputs. This file is later used to generate the complete MySQL database.

r ~
E simulation.a_result [V\04 - Simulations\WOLPE_2013_results\02 - Simulation results\bacth2 - 08212013 \Midsize_CONV_DI20L_5AU_MRO_AEROO0_ROL... l = B

File Edit View Settings 2

DEH 2| 2B ALE EQQ| B R

1 H<simulation DisplayName="conv_midsize_su_2wd_VOLPE" Description=" Generic midsize conventional with an automatic transmissi +

2 <Version Author="amoawad" Date="83/27/2813 83:24:47.325 PM" /> L
3 <Property Name="8pplication" Value="Light Duty" /> 1
E <Software Name="Matlab" Version="R2@18a (32-bit)" />
sH <system DisplayName="conv_midsize_ au_2wd VOLPE" name="veh" layout="vehicle.a_layout" layoutVersion="" configuration="veh.
2232 [ <sizing rule_file="sr_conv_accel_eng_pwr passing” grade_compo="eng" path="\\vms-81\cluster\volpe_2813\\users\amocawad\save
2314 [ <process DisplayName="US 2 Cycle with cost and GHG" Version="" name="us 2_cycle with_cost_and_ghg" optional="false" FileN
2552 <setup decimation="18" ghl stop_ time="1529" />
2553 [ <results >
3434 <signals name="accelec_plant_curr_in_simu™ />
3435 <signals name="accelec_plant_curr_out_simu" />
3436 <signals name="accelec_plant_pwr_simu" />
3437 <signals name="accelec_plant_volt_in_simu™ />
3438 <signals name="accelec_plant_volt_out_simu" />
3439 <signals name="accmech_plant_pwr_simu" />
3448 <signals name="accmech_plant_spd_in simu" />
3441 <signals name="accmech_plant_spd_out_simu™ />
3442 <signals name="accmech_plant_trq_in simu" />
3443 <signals name="accmech_plant_trq_out_simu™ />
3222 <signals name="accmech_plant_trq_simu" />
3445 <signals name="chas_plant_distance_out_simu" />
3445 <signals name="chas_plant_force_grade_simu" />
3447 <signals name="chas_plant_force_in_simu" />
3'|—Qz| <signals name="chas plant force loss simu™ /> i
] v
Ln1/3660 Coll/8 Sel0 Selln0 153 MB UTF-8 CR+LF INS XML Document

Figure 62 — Autonomie Results XML File

10.5. Folder Nomenclature

The MySQL database created and used by the VOLPE model required a searchable list of parameters from

which to retrieve information about a particular vehicle. Because some of these parameters did not come

from Autonomie, a folder nomenclature was adopted as shown in Figure 63.
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R — — e — [—r— e — e —
| Vehicle Class | | Vehicle Technology | | Engine Technology | | Transmission Technology
___\___I — — — — e - T s — — — - e ¢ — e — — /_/._

\ \ / -
N\ | / -
\ \ / e
N \ , -
) \‘\ \\ / _~ -
N \ / i = (3= g
\ \ / -

N\
-z S N . v 7
@Uv| |« 02 - Simulation results » bacth? - 08212013 »,

=l Recent Places  Midsize_CONV D;ﬂl_/SAU MH{{AEROU ROLLZ 081412 141036

L Midsize_ CONVDIZDL 5AU7MHD AERCD F‘.OLB 031413 141041

8/22/2013 3:21 PM
8/22/2013 3:21 PM

~ | 3 | | Search bacthz - 08212013 P
. : 7 —-= -
Organize « = Open Bumn Newi:older »// - - =« i @
s i ‘ -

e N / - - e - A

r Favorites - Nar‘mz ‘\ /, B _ Date modified |:|
PR Desktop ‘ﬂ | | Midsize_COMV_DI20L_SAU_MRO_AEROO0_ROLLO_ 081413 141116 10/20/201311:32 ... |
4 Downloads ) Midsize_CONV_DI20L_5AY_MRO m—:F‘.Oﬂ ROL'L‘L 081413 1\4104'3 9/7/2013 2:44 AM f

f
f

4 Libraries | M|d5|zg4CONV DI20L Si}U MRO_AEROL ROLLU 081413 141042 9/7/2013 2:44 AM f
| Documents | MLd'fze CONV_DI20L SAU_MRO_AEROL R@LL‘L 081413 141044\ 8/25/20137:42PM |+
o Music v A i / U} i | | 5

: i %
F MI'dSI'ZE_CONV_QIZﬁL_SAU_MRD_AEROU._(. Date medified: 10/20/201311:32 PM ¥
! F Filefolder -~ 4 Offline availability: I\rat available \
' Z / i )
/. / i \
ya / ! \
. i
2 g / R VS .

i Lightweighting | |

i Technology

Figure 63 — Folder Nomenclature

The naming conventions are similar to the acronyms currently used in the decision trees by the VOLPE

model. For example, the transmission technology acronyms are:

e 5AU — 5-speed automatic transmission

e 6AU — 6-speed automatic transmission

e 8AU — 8-speed automatic transmission

e 6DCT — 6-speed dual-clutch transmission
e 8DCT — 8-speed dual-clutch transmission
e 5DM — 5-speed manual transmission

e 6DM — 6-speed manual transmission

e 7DM — 7-speed manual transmission
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The lightweighting acronyms are:

MRO — glider mass reduction of 0%

MR1 — glider mass reduction of 1.5%
MR2 — glider mass reduction of 7.5%
MR3 — glider mass reduction of 10%
MR4 — glider mass reduction of 20%

The aerodynamics acronyms are:

AEROO — aerodynamics reduction of 0%
AERO1 — aerodynamics reduction of 10%

AERO2 — aerodynamics reduction of 20%

The rolling resistance acronyms are:

ROLLO — rolling resistance reduction of 0%
ROLL1 — rolling resistance reduction of 5%
ROLL2 — rolling resistance reduction of 10%

ROLL3 — rolling resistance reduction of 20%

Since the engine technologies were not all represented to demonstrate the process, the following

acronyms were selected:

PFI20L — 2.0-liter naturally aspirated engine, port fuel injection, variable valve timing

DI20L — 2.0-liter naturally aspirated engine, variable valve timing, direct injection

DIVVL20L — 2.0-liter naturally aspirated engine, variable valve timing, variable valve lift, direct
injection

TDI16L — 1.6-liter turbo charged engine, direct fuel injection, variable valve timing

TDIVVL16L — 1.6-liter turbo charged engine, direct fuel injection, variable valve timing and lift

TDIVVL12L — 1.2-liter turbo charged engine, direct fuel injection, variable valve timing

10.6. Individual Vehicle Validation

Once the individual simulations are completed, Autonomie provides the ability to analyze them at both a

high level (i.e., fuel economy) and a low level (i.e., time-based engine power) through its graphical user



DRAFT

interface. An algorithm is also used to automatically flag any potential issues within a simulation (i.e., too

many shifting events on a specific cycle).
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Figure 64 shows a sample of parameter outputs from Autonomie provided for every vehicle among the

27,600 vehicles simulated. The list of output parameters generated for the VOLPE model is detailed in

Section 11.

summary |warnings | Cost | GREET Emissions

I conv_midsize_au_2wd_VOLPE i

Mame Unit
= Summary
E| Adjusted Using Y2008 & Cycle Equivalent Fuel Economy
{& &l
| City Adjusted Y2008 mile/gallon
-| Combined 55/45 Adjusted vV2008 mile/gallon
| Highway Adjusted Y2008 mile/gallon
-| Combined 47/53 Adjusted ¥2008 mile/gallon
=} Adjusted Using Pre Y2008 (0.9*UDDS,0.78*HWFET) Fuel Economy
& o
| City Adjusted mile/gallon
| Highway Adjusted mile/gallon
| Combined 55/45 Adjusted mile/gallon
.| Combined 47/53 Adjusted mile/gallon
=} Unadjusted Fuel Ecomomy
@| |§_||
-| City Unadjusted mile/gallon
-| Highway Unadjusted mile/gallon
+| Combined 55/45 Unadjusted mile/gallon
+| Combined 47/53 Unadjusted mile/gallon
Mame Unit
- Wehicle
- Energy

conv_midsize_au_2wd_VOLPE

Figure 64 — Baseline Conventional Vehicle Outputs

Numerous predefined plots are also available to analyze any time-based parameter from the simulation.

Figure 65 shows an example of engine speed, vehicle speed, and gear number for a conventional vehicle.
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Engine Speed on HFET Cycle [rad’s] x 1
Engine Torgue on HFET Cycle [N.m] x 1
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Figure 65 - Engine Speed, Engine Torque, Gear Number, and Vehicle Speed Time-Based Signals on
HFET Cycle.
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11. Vehicle Database

88

VOLPE model requirements require the user to tackle two complicated problems simultaneously:

1. A vehicle simulation tool must be used to quickly and properly estimate energy consumption of
extremely large numbers of specific vehicle, powertrain, and component technologies.

2. The user must easily access and analyze information across large amounts of data.

As discussed in Section 10, a process for performing large-scale simulation with Autonomie is now in place.
With it, a simulation can be quickly validated, or any discrepancies in the results can be examined in detail.
Additionally, Autonomie is fully integrated with distributed computing, making extremely large numbers

of simulations, such as the quantity required for full VOLPE analysis, feasible.

However, Autonomie was not originally designed to analyze such large sets of data. Such analyses impose
data management concerns (numbers of files, disk sizes, access times); require the ability to run post-
processing calculations without the time cost of rerunning all of the simulations; and involve plots,
calculations, and other analytical tools for looking at high-level indicators and spotting overall trends. In
response, Argonne’s new process allows the detailed simulation results provided by Autonomie to either
be distilled into a format that can be easily distributed and analyzed horizontally across many simulations,
or examined via a deep, vertical dive into one simulation. Both aspects are critical for the full-scale vehicle

analysis that VOLPE requires.

The output of the simulations includes everything necessary for Autonomie to analyze or recreate an
individual simulation, including the Simulink model representing the vehicle, a metadata file containing
simulation results *.a_result file, and a data.mat file containing all of the time-based signal data. These
results can be archived for full traceability and reproducibility of all simulations. However, it is currently
not feasible to share or analyze these data. For example, 27,600 simulation results resulted in 2 TB of disk
space usage. It’s simply not scalable to pass this much information around, much less the number of
simulations required for VOLPE. Additionally, each simulation has individual files storing the results, so
just managing or indexing the sheer number of files becomes an issue. Most of the information contained
in those results files, however, is not necessary for the VOLPE analysis (i.e., second-by-second fuel or
electrical consumption values). Therefore, a subset of the data is collected into a portable, user-friendly

database.
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11.1. Database Creation

Argonne’s database creation process works from an input sheet that specifies which input and output
parameters should be included in the database. The process scans all of the simulation results files,
extracts the specified parameters, and stores them in a single, specialized database file. This allows us to
exclude irrelevant information not needed for cross-cutting analyses, while leaving the full results

archived, just in case. Figure 66 lists the input and output parameters currently included in the database.

4[ INPUT }

*Vehicle Name
*Vehicle Class
*Mass Reduction
eElectric Range
*Rolling Resistance
eAerodynamics
ePowertrain Type
eEngine Type
eTransmission Type
eFuel Type
eBattery Type

OUTPUT

*Engine Power

eFuel Cell Power

*Motor 1 Power

*Motor 2 Power

eBattery Usable Energy
*\ehicle Mass

*FTP Fuel Consumption

*FTP Electrical Consumption
*HFET Fuel Consumption
*HFET Electrical Consumtpion
eCombined Fuel Consumption
eCombined Electrical Consumption

AUTONOMIE PROCESS

Figure 66 — Inputs and Outputs from Simulation Can Be Saved to the Database

A single database file is easy to redistribute. The aforementioned 2 TB of data was compressed into 180

MB of data, and took 7 hours to generate from the original simulation results. Additionally, the database
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is developed using the MS SQL Express 2012 format, which is free and easily accessed by standard
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structured query language tools.

11.2. Database Structure

As shown in Figure 67, the database is structured to be generic, so that any simulation input parameter,
result, or descriptive property can be stored. This allows maximum flexibility in the type of data that can
be stored. The tables are structured to allow logical grouping of data, maximize retrieval speed, and

minimize disk space.

Vehicles and the references to their parameters are stored separately from parameters specific to the
type of simulation, because the same vehicle can be run on multiple procedures or cycles. For example,
one vehicle may be run on an acceleration test and a fuel consumption test, such as a combined cycle
procedure. Each simulation may produce a fuel consumption, which would then be linked to that
simulation record. However, parameters common across both simulation runs, such as the coefficient of
drag of the vehicle, would be linked to the vehicle record. Not all vehicles and simulations have the same
parameters; for example, motor parameters are only available for a vehicle with an electric power path
(e.g., EVs, HEVs, PHEVs), and fuel consumption is only available for simulations with an engine or fuel cell,

which excludes EVs.

Each parameter stores name, description, data type (i.e., string, double, integer, Boolean), and unit. The

values themselves are organized into tables by data type for disk size optimization.
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¥ Vehicleld

VehicleName
' VehicleTableTableAdapter

Fill,GetData ()

@ GetldFromMame (@VehicleName)
2 GetMaxdd ()

2 InsertMew (@Vehicleld, @VehicleNa...

¥ simulationld

SimulationType
'8 SimulationTableTableAdapter

Fill GetData ()

2 GetldFromName (@5imulationType)

2 GetMadd ()

s InsertMew (@Simulationld, @SimulationTy...

g0l ¥ Simulationld

T. StringValueTable

¥ Vehicleld

# Parameterd oo
Value

@ StringValueTableTableAdapter
“Mal Fill, GetData ()

¥ Vehicleld
Simulationld
Parameterld
Value

¥ Vehicleld
Simulationld
Parameterld
Value

I.. ParameterTable 2

¥ Parameterld
ParameterMame
ParameterDescription
ParameterDataType
ParameterUnit
ParameterlsProperty

8 ParameterTableTableAdapter &

% FillGetData

s GetldFromMame (@ParameterMName)

i GetMadd ()

2 InsertMew (@Parameterld, @ParameterMame, @...

il

¥ Vehicleld

# Simulationld

# Parametedd
Value

'E_ BooleanValueTableTableAdapter

Fill. GetData ()

11.3. User Interface

Figure 67 — Database Structure

Although the database is accessible by any tool or programming language that can interact with

databases, Argonne has also developed a tool to easily visualize and analyze the data (Figure 68). This tool

provides a quick and intuitive way for users to quickly select subsets of simulation results of interest, select

which parameters to view, modify assumptions, perform additional post-processing calculations on the

data retrieved from the database, and view plots to better visualize the data.

Additionally, the user interface provides some advanced features that allow users to import their own

plots and analysis functions; save “projects” of filters, parameters, and overridden assumptions; or export

subsets of the data to Excel for additional data analysis or redistribution.

This tool allows users who are not familiar or comfortable with direct database access to perform the

analysis necessary for VOLPE.
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Figure 68— Database Analysis Tool

11.4. VOLPE Model Access to the Database

A critical part of the process validation was to ensure that the VOLPE model can access any information

from the database. That step was successfully validated by the VOLPE developers using a complete MySQL

database provided by Argonne.
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12. QA/QC Process
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The large number of results could lead to an increase in number of iterations, in erroneous results

propagating to further steps of the study and could introduce delays in generating results.

In order to improve accuracy and reduce iterations a QA/QC (Quality Assurance/Quality Check) process
has been developed at ANL to perform checks on simulation results. This automated checking process can

greatly reduce simulation iterations and improve quality of results.

Fields of interest are extracted from simulation results and imported into the database where an
interactive report is generated listing the results that need to be examined. Statistical procedures are

applied to flag erroneous results, also current methods are developed to have the ability to trace invalid

results to cause of error (Figure 69).
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Figure 69 - Example of QA/QC report

An exhaustive list of parameters are extracted and checked for each vehicle simulation:

e Trace

e Vehicle Mass

e Engine Percentage ON

e Engine Number of Starts

e Engine/Fuel Cell Average Efficiency
e Engine/Fuel Cell Power

e Engine Speed

e Motor Average Efficiency
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e Motor Power

e Motor Speed

e Motor Max Current

e Number of Shifts

e Time Fraction in Top Gear

e Battery SOC

e HEV Delta SOC

e Percentage Regeneration Recovered
e Electric Consumption

e  Fuel Economy ratios

Distribution plots are generated as part of the report for visual perspectives (Figure 69)

Distribution of Fuel Consumption for Eng07a-Direct Injection (GDIS)
Absolute percentage compared with: Dual Cam Phasing(DCP) [eng01]
Standard Deviation 0.8:
100+ : : : =05
[0 Number of occurences - all tech. combined
¢ Average value = 8.4
® Baseline vehicle (ANL) = 9.1
4 VOLPEresult=5.2
= Density of data
8U

60

Density [0,1]

40 0.2

Number of Occurences

20

\

5 6 7 8 9 10 11
Fuel Consumption Improvement (ABS), %

Figure 69 —Example of QA/QC distribution plot
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13. Summary

The objective of the project was to develop and demonstrate a process to replace the current decision

trees and synergies by individual results generated from detailed vehicle simulations.

This report described the process developed, including the generation of the MySQL database that will be
accessible by the Volpe model. The process was validated by running numerous simulations representing
most of the vehicle, powertrain, and component technologies currently included in the decision trees. The
process efficiently simulates hundreds of thousands of vehicles to model anticipated future vehicle
technologies and more than a million simulations including sizing iterative algorithms and standard
procedure runs. A statistical model has been established in ordered to find relationships and reduce the
necessary number of runs. Also a QA/QC process was thoroughly developed in order to assure the

accuracy and validity of the results. Figure 70 shows a visual summary of the entire process.
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Figure 70 - Large Scale Simulation Process Summary





